Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемДарья Стрюкова
1 БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ Выполнили : Коновалов Р.С Полежаев В.Е БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ Выполнили : Коновалов Р.С Полежаев В.Е
2 Введение Введение В 1948г. американские ученые Дж.Бардин и В.Браттейн создали полупроводниковый триод, или транзистор. Это событие имело громадное значение для развития полупроводниковой электроники. Транзисторы могут работать при значительно меньших напряжениях, чем ламповые триоды, и не являются простыми заменителями последних: их можно использовать не только для усиления и генерации переменного тока, но и в качестве ключевых элементов. Определение «биполярный» указывает на то, что работа транзистора связана с процессами, в которых принимают участие носители заряда двух сортов (электроны и дырки). Слово «транзистор» произошло от английского словосочетания «transfer resistor» - преобразователь сопротивления. В 1948г. американские ученые Дж.Бардин и В.Браттейн создали полупроводниковый триод, или транзистор. Это событие имело громадное значение для развития полупроводниковой электроники. Транзисторы могут работать при значительно меньших напряжениях, чем ламповые триоды, и не являются простыми заменителями последних: их можно использовать не только для усиления и генерации переменного тока, но и в качестве ключевых элементов. Определение «биполярный» указывает на то, что работа транзистора связана с процессами, в которых принимают участие носители заряда двух сортов (электроны и дырки). Слово «транзистор» произошло от английского словосочетания «transfer resistor» - преобразователь сопротивления.
3 Общие сведения Транзистором называется полупроводниковый прибор с двумя электронно-дырочными переходами, предназначенный для усиления и генерирования электрических сигналов. В транзисторе используются оба типа носителей - основные и неосновные, поэтому его называют биполярным. Транзистором называется полупроводниковый прибор с двумя электронно-дырочными переходами, предназначенный для усиления и генерирования электрических сигналов. В транзисторе используются оба типа носителей - основные и неосновные, поэтому его называют биполярным. Биполярный транзистор состоит из трех областей монокристаллического полупроводника с разным типом проводимости:, базы и коллектора. Переход, который образуется на границе эмиттер-база, называется эмиттерным, а на границе база- коллектор - коллекторным. В зависимости от типа проводимости крайних слоев различают транзисторы p-n-р и n-р-n. Биполярный транзистор состоит из трех областей монокристаллического полупроводника с разным типом проводимости: эмиттера, базы и коллектора. Переход, который образуется на границе эмиттер-база, называется эмиттерным, а на границе база- коллектор - коллекторным. В зависимости от типа проводимости крайних слоев различают транзисторы p-n-р и n-р-n.
4 Схематическое изображение транзистора типа p-n-p:
5 Каждый из переходов транзистора можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают три режима работы транзистора: 1. Режим отсечки - оба p-n перехода закрыты, при этом через транзистор обычно идёт сравнительно небольшой ток; 2. Режим насыщения - оба p-n перехода открыты; 3. Активный режим - один из p-n переходов открыт, а другой закрыт. В режиме отсечки и режиме насыщения управление транзистором почти отсутствует. В активном режиме такое управление осуществляется наиболее эффективно, причём транзистор может выполнять функции активного элемента электрической схемы.
6 Область транзистора, расположенная между переходами называется базой (Б). Примыкающие к базе области чаще всего делают неодинаковыми. Одну из них изготовляют так, чтобы из неё наиболее эффективно происходила инжекция в базу, а другую - так, чтобы соответствующий переход наилучшим образом осуществлял экстракцию инжектированных носителей из базы. Область транзистора, основным назначением которой является инжекция носителей в базу, называют эмиттером (Э), а соответствующий переход эмиттерным. Область, основным назначением которой является экстракция носителей из базы - коллектор (К), а переход коллекторным.
7 Если на эмиттерном переходе напряжение прямое, а на коллекторном переходе - обратное, то включение транзистора считают нормальным, при противоположной полярности - инверсным. По характеру движения носителей тока в базе различают диффузионные и дрейфовые биполярные транзисторы. Основные характеристики транзистора определяются в первую очередь процессами, происходящими в базе. В зависимости от распределения примесей в базе может присутствовать или отсутствовать электрическое поле. Если при отсутствии токов в базе существует электрическое поле, которое способствует движению неосновных носителей заряда от эмиттера к коллектору, то транзистор называют дрейфовым, если же поле в базе отсутствует - бездрейфовым (диффузионным).
8 Основные физические процессы в биполярных транзисторах В рабочем режиме биполярного транзистора протекают следующие физические процессы: инжекция, диффузия, рекомбинация и экстракция. Рассмотрим р-n переход эмиттер - база при условии, что длина базы велика. В этом случае при прямом смещении р-n перехода из эмиттера в базу инжектируются неосновные носители. Закон распределения инжектированных дырок Рn(х) по базе описывается следующим уравнением: Рn(x)=Рno*exp(в*Vg)*exp(-x/Lp)
9 Процесс переноса инжектированных носителей через базу - диффузионный. Характерное расстояние, на которое неравновесные носители распространяются от области возмущения -диффузионная длина Lp. Поэтому, если необходимо, чтобы инжектированные носители достигли коллекторного перехода, длина базы W должна быть меньше диффузионной длины Lp. Это условие - W < Lp, является необходимым для реализации транзисторного эффекта - управление током во вторичной цепи через изменение тока в первичной цепи. В процессе диффузии через базу инжектированные неосновные носители рекомбинируют с основными носителями в базе.
10 Для восполнения прорекомбинированных основных носителей в базе через внешний контакт должны подойти такое же количество носителей. Таким образом, ток базы - это рекомбинационный ток. Продиффундировавшие через базу без рекомбинации носители попадают в электрическое поле обратно смещенного коллекторного p-n перехода и экстрагируются из базы в коллектор. Таким образом, в БТ реализуются четыре физических процесса: инжекция из эмиттера в базу; диффузия через базу; рекомбинация в базе; экстракция из базы в коллектор;
11 Зонная диаграмма биполярного транзистора в равновесном состоянии Состояние транзистора, при котором отсутствует напряжение на p-n переходе между эмиттером и базой(Э - Б), называют равновесным (рис.а). В равновесном состоянии на обоих переходах устанавливается динамическое равновесие между потоками дырок и электронов, протекающих в обе стороны. Каждый p-n переход транзистора можно рассматривать отдельно при условии, что расстояние между переходами значительно больше диффузионной длины неосновных носителей в средней области. Из-за наличия потенциальных барьеров в равновесном состоянии на p-n переходах образуется "потенциальная яма", из которой могут выйти лишь те электроны, которые обладают достаточной тепловой энергией, и в равновесном состоянии в обоих переходах устанавливается динамическое равновесие между потоками электронов. Аналогичное равновесие устанавливается между потоками дырок, которые находятся на "потенциальных гребнях" и свободно перемещаются в соседние слои. В равновесном состоянии результирующие токи через оба перехода равны нулю.
12 Токи в биполярном транзисторе Токи в биполярном транзисторе Для биполярного транзистора p-n-р типа в активном режиме эмиттерный переход смещён в прямом направлении, и через него происходит инжекция дырок, как неосновных носителей, в базу. База должна иметь достаточно малую толщину W, чтобы инжектированные в базу неосновные носители не успевали прорекомбинировать за время переноса через базу. Коллекторный переход, нормально смещенный в обратном направлении "собирает" инжектированные носители, прошедшие через слой базы. Рассмотрим компоненты токов в эмиттерном и коллекторном переходах. Для любого p-n перехода ток J определяется суммой электронного Jn и дырочного Jp компонент, а они в свою очередь имеют дрейфовую и диффузионную составляющие.
13 При приложении к эмиттерному переходу прямого напряжения Uэ > 0 в биполярном транзисторе p-n-р происходит инжекция дырок из эмиттера в базу Iэр и электронов из базы в эмиттер Iэn. Ввиду того, что эмиттер легирован намного сильнее базы, ток инжектированных дырок Iэр будет значительно превышать ток электронов Iэn. Инжектированные в базу дырки в результате диффузии будут перемещаться в коллекторному переходу, и если ширина базы W много меньше диффузионной длины Lp, почти все дырки дойдут до коллектора и электрическим полем коллекторного p- n-р перехода будут переброшены в р-область коллектора. Возникающий вследствие этого коллекторный ток лишь немного меньше тока дырок, инжектированных эмиттером.
14 Схема БТ в активном режиме, иллюстрирующая компоненты тока с общей базой:
15 Величина «полезной» дырочной компоненты : I эp = γ · I э Величина дырочного эмиттерного тока, без рекомбинации дошедшая до коллектора: γ κI э Ток базы I б транзистора будет состоять из трех компонент: 1) электронный ток в эмиттерном переходе I эn = (1 – γ)·I э, 2) рекомбинационный ток в базе (1 - κ )γ I э 3) тепловой ток коллектора I 0 – тепловой ток, I g – ток генерации.
16 Классификация транзисторов Транзисторы классифицируются по допустимой мощности рассеивания и по частоте. В соответствии с принятой классификацией транзисторы по величине мощности, рассеиваемой коллектором, делятся на транзисторы малой (Рк ЗООО мВт), средней (Рк 1,5 Вт) и большой (Рк 1,5 Вт) мощности. По значению предельной частоты, на которой могут работать транзисторы, их делят на низкочастотные (З МГц), среднечастотные ( ЗО МГц), высокочастотные ( 300 МГц) и сверхвысокочастотные ( > ЗООМГц). Низкочастотные маломощные транзисторы обычно изготавливают методом сплавления, поэтому их называют сплавными. Так как при изготовлении низкочастотных сплавных транзисторово бычно используют равномерно легированный исходный материал, то при малых токах электрическое поле в области базы таких транзисторов отсутствует и по механизму движения носителей они относятся к бездрейфовым. К высокочастотным относят транзисторы с рабочими частотами свыше 30 МГц. Для обеспечения работы транзистора на таких частотах требуется уменьшить время пролета носителей через базу и область объемного заряда коллектора, уменьшить барьерные емкости и объемные сопротивления базы и коллектора. Выполнить все это на основе сплавной технологии невозможно. Основным методом изготовления высокочастотных транзисторов является диффузия примесей, такие транзисторы поэтому часто называют диффузионными. При диффузии примеси в базе распределяются неравномерно, там создается электрическое поле. Следовательно, по механизму движения носителей диффузионные транзисторы могут относиться к дрейфовым. Классификация транзисторов отражена в их обозначениях. Классификация транзисторов отражена в их обозначениях. В соответствии с ГОСТ транзисторам присваиваются обозначения, состоящие из четырех элементов: Первый элемент - буква или цифра, обозначающая исходный материал: R или 1 - германий; К, или 2 - кремний; А или 3- арсенид галлия. В соответствии с ГОСТ транзисторам присваиваются обозначения, состоящие из четырех элементов: Первый элемент - буква или цифра, обозначающая исходный материал: R или 1 - германий; К, или 2 - кремний; А или 3- арсенид галлия. Второй элемент - буква Т для биполярных транзисторов, бук-ва П-для униполярных (полевых) транзисторов. Второй элемент - буква Т для биполярных транзисторов, бук-ва П-для униполярных (полевых) транзисторов. Третий элемент обозначения транзисторов определяет их классификацию подгруппам рассеиваемых мощностей (малая, средняя, большая) и граничной частоте fгр коэффициента передачи тока. Третий элемент обозначения транзисторов определяет их классификацию подгруппам рассеиваемых мощностей (малая, средняя, большая) и граничной частоте fгр коэффициента передачи тока. Четвертый и пятый элементы определяют порядковый номер разработки технологического типа прибора и обозначаются от 01 до 99. Четвертый и пятый элементы определяют порядковый номер разработки технологического типа прибора и обозначаются от 01 до 99. Примеры обозначений: Примеры обозначений: 2Т144А - транзистор кремниевый, малой мощности, fгр не более 3МГц, номер разработки 44, группа А. 2Т144А - транзистор кремниевый, малой мощности, fгр не более 3МГц, номер разработки 44, группа А. ГТ605А - транзистор германиевый, средней мощности, fгр не более 30 МГц, номер разработки 05, группа А. ГТ605А - транзистор германиевый, средней мощности, fгр не более 30 МГц, номер разработки 05, группа А.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.