Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемДмитрий Прозоров
1 Теория и практика коллективных действий к.э.н., доцент Григорий Владимирович Калягин
2 1.Форма производственной функции в организации коллективных действий. 2.Гомогенность и гетерогенность группы по доходам и интересам. 3.Размер группы и характер предоставляемого блага. 4.Плотность связей в группе. 5.Централизация группы. 2. ТЕОРИЯ КРИТИЧЕСКОЙ МАССЫ
3 Вопросы индивида, сталкивающегося с необходимостью организации коллективных действий: Вопросы индивида, сталкивающегося с необходимостью организации коллективных действий: Насколько вклад размером $100 увеличит для меня вероятность реализации успешного исхода? Насколько вклад размером $100 увеличит для меня вероятность реализации успешного исхода? Насколько изменится эффект, если вложить больше? Насколько изменится эффект, если вложить больше? Принесет ли вложение еще $100 такое же, меньшее или большее увеличение вероятности успеха? Принесет ли вложение еще $100 такое же, меньшее или большее увеличение вероятности успеха? 2.1. Форма производственной функции в организации коллективных действий.
4 УБЫВАЮЩАЯ ОТДАЧА r 0 P(r) 2.1. Форма производственной функции в организации коллективных действий.
5 ВОЗРАСТАЮЩАЯ ОТДАЧА r 0 P(r) 2.1. Форма производственной функции в организации коллективных действий.
6 S -ОБРАЗНАЯ ПРОИЗВОДСТВЕННАЯ ФУНКЦИЯ r 0 P(r) 2.1. Форма производственной функции в организации коллективных действий.
7 Интересы Степень гетерогенности группы Ресурсы 2.2. Гомогенность и гетерогенность группы по доходам и интересам.
8 Если степень гетерогенности группы с точки зрения ресурсов или заинтересованности в благе достаточно высока, увеличивается вероятность того, что найдется индивид, настолько заинтересованный в благе, что он сможет обеспечить им всю группу без чьей- либо помощи. Если степень гетерогенности группы с точки зрения ресурсов или заинтересованности в благе достаточно высока, увеличивается вероятность того, что найдется индивид, настолько заинтересованный в благе, что он сможет обеспечить им всю группу без чьей- либо помощи Гомогенность и гетерогенность группы по доходам и интересам.
9 Предпосылки: Предпосылки: A.Каждый член группы знает форму производственной функции и степень заинтересованности в благе, а также объем ресурсов у других ее членов; B.Люди могут сравнивать ценность ресурсов с ценность блага – есть общая база оценки; C.Люди максимизируют свое благосостояние; D.Количество блага постоянно: оно либо есть, либо его нет; 2.2. Гомогенность и гетерогенность группы по доходам и интересам.
10 Предпосылки: Предпосылки: E.Если P(r) – вероятность предоставления блага; r – ресурсы, инвестируемые в предоставление блага; P(R) = 1; при r R P=1; при r =0 P=0. F.Производственная функция монотонно возрастает и дважды дифференцируема; G.Предоставление единицы ресурсов стоит индивиду k ден. ед.; эти издержки одинаковы для всех членов группы; H.Индивидуальная оценка ценности блага - V; V>kR, в противном случае это не коллективное благо Гомогенность и гетерогенность группы по доходам и интересам.
11 Индивидуальное решение об участии в коллективных действиях: Индивидуальное решение об участии в коллективных действиях:(2.1) Где V, k = const. Где V, k = const.(2.2) 2.2. Гомогенность и гетерогенность группы по доходам и интересам.
12 Откуда: Откуда:(2.3) Где P/r – предельное изменение вероятности предоставления блага, отражающее наклон производственной функции. Где P/r – предельное изменение вероятности предоставления блага, отражающее наклон производственной функции. Если P/r > k/V инвестирование дополнительной единицы ресурсов приносит прибыль, в противном случае – убыток. Если P/r > k/V инвестирование дополнительной единицы ресурсов приносит прибыль, в противном случае – убыток Гомогенность и гетерогенность группы по доходам и интересам.
13 Совершенно гомогенная группа V одинакова для всех каждый может инвестировать или не инвестировать одинаковое для всех количество ресурсов Q. P=P(C+Q), где C – инвестиции, сделанные остальными членами группы. V одинакова для всех каждый может инвестировать или не инвестировать одинаковое для всех количество ресурсов Q. P=P(C+Q), где C – инвестиции, сделанные остальными членами группы. Линейная производственная функция. Если всегда P/r k/V – никто ничего не инвестирует. Если всегда P/r > k/V – все инвестируют и P=1. Линейная производственная функция. Если всегда P/r k/V – никто ничего не инвестирует. Если всегда P/r > k/V – все инвестируют и P= Гомогенность и гетерогенность группы по доходам и интересам.
14 Совершенно гомогенная группа Функция убывающей отдачи. Инвестиции будут осуществляться до точки, в которой P/r = k/V. Функция убывающей отдачи. Инвестиции будут осуществляться до точки, в которой P/r = k/V. Функция возрастающей отдачи. Если изначально для каждого члена группы P/r > k/V, P=1. В противном случае P=0. Функция возрастающей отдачи. Если изначально для каждого члена группы P/r > k/V, P=1. В противном случае P=0. Если бы нашлись люди, желающие инвестировать ресурсы первоначально, начиная с точки, в которой P/r = k/V каждый последующий инвестор получал бы прибыль. Однако, в гомогенной группе инициаторов не найдется. Если бы нашлись люди, желающие инвестировать ресурсы первоначально, начиная с точки, в которой P/r = k/V каждый последующий инвестор получал бы прибыль. Однако, в гомогенной группе инициаторов не найдется Гомогенность и гетерогенность группы по доходам и интересам.
15 Гетерогенная группа Функция убывающей отдачи. Функция убывающей отдачи. Подмножество желающих: желающих участвовать в коллективных действиях больше сначала, чем потом. Подмножество желающих: желающих участвовать в коллективных действиях больше сначала, чем потом. Пусть V*(r) – для каждой точки на производственной функции, уровень заинтересованности индивида в благе, такой, что P/r > k/V*. Пусть V*(r) – для каждой точки на производственной функции, уровень заинтересованности индивида в благе, такой, что P/r > k/V*. Пусть W(r) – подмножество желающих, для которых VV* Пусть W(r) – подмножество желающих, для которых VV* 2.2. Гомогенность и гетерогенность группы по доходам и интересам.
16 Для всех i
17 Гетерогенная группа Возрастающая отдача: Возрастающая отдача: Коллективные действия вряд ли начнутся. Коллективные действия вряд ли начнутся. Если они все же начнутся, число их участников будет увеличиваться по нарастающей (эффект снежного кома). Если они все же начнутся, число их участников будет увеличиваться по нарастающей (эффект снежного кома). После достижения точки, в которой P/ r=k/V инвестиции начнут окупаться, поэтому индивиды с бòльшим количеством ресурсов с бòльшей вероятностью сочтут для себя выгодным первоначальное инвестирование в производство блага. После достижения точки, в которой P/ r=k/V инвестиции начнут окупаться, поэтому индивиды с бòльшим количеством ресурсов с бòльшей вероятностью сочтут для себя выгодным первоначальное инвестирование в производство блага Гомогенность и гетерогенность группы по доходам и интересам.
18 Гетерогенная группа Пусть M(r|c) – минимально необходимая заинтересованность в благе – ожидаемая отдача от инвестиций r единиц ресурсов равна 0, при условии, что c единиц ресурсов уже инвестировано другими. Пусть M(r|c) – минимально необходимая заинтересованность в благе – ожидаемая отдача от инвестиций r единиц ресурсов равна 0, при условии, что c единиц ресурсов уже инвестировано другими. Пусть M(r|0)= M(r) – минимально необходимая заинтересованность в благе для инициатора: Пусть M(r|0)= M(r) – минимально необходимая заинтересованность в благе для инициатора:(2.4)(2.5) 2.2. Гомогенность и гетерогенность группы по доходам и интересам.
19 Гетерогенная группа Или: Или:(2.6) Так как функция возрастающая, M(r) сокращается с увеличением r (ΔP(r)>Δr). Так как функция возрастающая, M(r) сокращается с увеличением r (ΔP(r)>Δr). Первоначальный инициатор сокращает необходимый уровень заинтересованности для последователей тем больше, чем больше ресурсов он инвестирует. Первоначальный инициатор сокращает необходимый уровень заинтересованности для последователей тем больше, чем больше ресурсов он инвестирует Гомогенность и гетерогенность группы по доходам и интересам.
20 Гетерогенная группа (2.7) Так как P(r)>0, P(c+r)> P(c). Откуда: Так как P(r)>0, P(c+r)> P(c). Откуда:(2.8) 2.2. Гомогенность и гетерогенность группы по доходам и интересам.
21 Гетерогенная группа Контракт «все или ничего»: в условиях неполноты информации, для стимулирования присоединения к производству блага, функция производства блага искусственно превращается в функцию слабого звена. Контракт «все или ничего»: в условиях неполноты информации, для стимулирования присоединения к производству блага, функция производства блага искусственно превращается в функцию слабого звена. Индивидуальное решение в таком случае: Индивидуальное решение в таком случае:(2.9) Где G – совокупные ресурсы, которые должны быть предоставлены группой в условиях такого контракта; b(G) – совокупное изменение вероятности получения блага. Где G – совокупные ресурсы, которые должны быть предоставлены группой в условиях такого контракта; b(G) – совокупное изменение вероятности получения блага Гомогенность и гетерогенность группы по доходам и интересам.
22 Гетерогенная группа Условие для функции возрастающей отдачи: Условие для функции возрастающей отдачи: Индивидуальное решение в таком случае: Индивидуальное решение в таком случае:(2.10) Неформальные имплицитные нормы (нормы конвенции) – эквивалент контракта «все или ничего». Неформальные имплицитные нормы (нормы конвенции) – эквивалент контракта «все или ничего». Проблема безбилетника, таким образом, возникает только при убывающей отдаче. Проблема безбилетника, таким образом, возникает только при убывающей отдаче Гомогенность и гетерогенность группы по доходам и интересам.
23 2.3. Размер группы и характер предоставляемого блага. Рост размера группы Увеличивается вероятность того, что найдется индивид, способный в одиночку профинансировать производство блага Сокращается ожидаемый размер критической массы Увеличивается ожидаемый объем предоставления блага
24 Если издержки предоставления блага малы, размер группы практически не имеет значения. Если издержки предоставления блага малы, размер группы практически не имеет значения. Если издержки предоставления блага ощутимы: Если издержки предоставления блага ощутимы: Пусть вероятность того, что в группе найдется индивид, готовый единолично профинансировать производство блага p = 1%, тогда вероятность того, что в группе из n индивидов такой найдется: Пусть вероятность того, что в группе найдется индивид, готовый единолично профинансировать производство блага p = 1%, тогда вероятность того, что в группе из n индивидов такой найдется:(2.11) 2.3. Размер группы и характер предоставляемого блага.
25 P(10) 0,0956 P(100) 0,634 P(1000) 1 Чем ближе совместно предоставляемое благо к полному отсутствия конкуренции в потреблении, тем больше позитивный эффект размера группы. Чем ближе совместно предоставляемое благо к полному отсутствия конкуренции в потреблении, тем больше позитивный эффект размера группы. Чем более гетерогенна группа по доходам и интересам, тем больше вероятность того, что благо будет предоставлено. Чем более гетерогенна группа по доходам и интересам, тем больше вероятность того, что благо будет предоставлено Размер группы и характер предоставляемого блага.
27 2.4. Плотность связей в группе. Актор – это субъект экономических и социальных отношений (индивид, организация, государство). Актор – это субъект экономических и социальных отношений (индивид, организация, государство). Связь – это взаимодействие между акторами; может быть односторонней или двусторонней, реальной или потенциальной. Связь – это взаимодействие между акторами; может быть односторонней или двусторонней, реальной или потенциальной. Отношения – это набор связей определенного типа между акторами, принадлежащими к определенной группе. Отношения – это набор связей определенного типа между акторами, принадлежащими к определенной группе. Сеть – это набор акторов и отношений, которыми они связаны. Сеть – это набор акторов и отношений, которыми они связаны.
28 A D B F H I E C G J 2.4. Плотность связей в группе.
29 Плотность социальной сети если все связи – односторонние: Плотность социальной сети если все связи – односторонние:(2.12) Плотность социальной сети если все связи – двусторонние: Плотность социальной сети если все связи – двусторонние:(2.13) Плотность индивидуальных связей Плотность индивидуальных связей(2.14) 2.4. Плотность связей в группе.
30 2.5. Централизация группы. Централизация сети – стандартное отклонение плотности индивидуальных связей: Централизация сети – стандартное отклонение плотности индивидуальных связей:(2.15) Стандартное отклонение плотности связей актора: Стандартное отклонение плотности связей актора:(2.16)
31 2.5. Централизация группы. Если индивидуальное решение об участие в коллективных действиях принимается, в общем случае, исходя из (2.1), решение организатора выглядит как: Если индивидуальное решение об участие в коллективных действиях принимается, в общем случае, исходя из (2.1), решение организатора выглядит как:(2.17) Где k – число жертвователей, C – издержки организатора на одного жертвователя. Где k – число жертвователей, C – издержки организатора на одного жертвователя. Для группы важно, чтобы ее организатором стал человек, для которого издержки (C) минимальны, то есть, у которого больше всего связей (d i ). Для группы важно, чтобы ее организатором стал человек, для которого издержки (C) минимальны, то есть, у которого больше всего связей (d i ).
32 2.5. Централизация группы. Вероятность того, что в группе найдется один успешный организатор намного выше вероятности того, что случайно выбранный из группы индивид окажется успешным организатором: Вероятность того, что в группе найдется один успешный организатор намного выше вероятности того, что случайно выбранный из группы индивид окажется успешным организатором:(2.18) Где q – вероятность того, что случайно выбранный член группы окажется успешным организатором. Где q – вероятность того, что случайно выбранный член группы окажется успешным организатором. При q=0,01 и N=400, Q0,982. При q=0,01 и N=400, Q0,982.
33 2.5. Централизация группы. Результаты симуляции 1.Гомогенная (по доходам, интересам, числу связей) группа большей плотности предоставит большее количество коллективного блага (благо будет предоставлено с большей вероятностью). 2.Группа более гетерогенная по числу связей (более централизованная) при прочих равных условиях обеспечит больший объем производства коллективного блага, по сравнению с менее централизованной группой.
34 2.5. Централизация группы. Результаты симуляции 3.Гетерогенность ресурсов и интересов увеличивает межгрупповую дисперсию объема производства коллективных благ. 4.Гетерогенность ресурсов сама по себе увеличивает масштаб коллективных действий. 5.Гетерогенность интересов может как увеличивать, так и уменьшать масштаб коллективных действий, так как самые обеспеченные ресурсами индивиды, и индивиды, обладающие наибольшим числом связей могут оказаться не самыми заинтересованными в коллективном благе.
35 2.5. Централизация группы. Почему централизованные сети более эффективны? 1.Отрицательное влияние на коллективные действия организационных издержек сокращается с увеличением гетерогенности группы по доходам. 2.Организатор может выбирать наиболее склонных к участию в коллективных действиях индивидов (если необходимы инвестиции только части группы). Для выполнения последнего условия организатор должен обладать полной информацией. Для выполнения последнего условия организатор должен обладать полной информацией.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.