Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемАнатолий Тимофеичев
1 Зонная диаграмма МНОП транзистора Кравченко Александр ФТФ, гр.21305
2 Введение. МДП-Транзистор как элемент памяти Рассмотрим RC цепочку, состоящую из последовательно соединенных нагрузочного сопротивления RH 1 МОм и полевого транзистора с изолированным затвором, приведенную на рисунках а, б. Если в такой схеме МДП-транзистор открыт, сопротивление его канала составляет десятки или сотни Oм, все напряжение питания падает на нагрузочном сопротивлении RН и выходное напряжение Uвых близко к нулю. Если МДП-транзистор при таком соединении закрыт, сопротивление между областями истока и стока велико (сопротивление р n перехода при обратном включении), все напряжение питания падает на транзисторе и выходное напряжение Uвых близко к напряжению питания Uпит. Как видно из приведенного примера, на основе системы резистор – МДП-транзистор легко реализуется элементарная логическая ячейка с двумя значениями: ноль и единица. МДП транзистор в качестве элемента запоминающего устройства а) открытое состояние; б) закрытое состояние
3 МДП-Транзистор как элемент энергозависимой памяти. МНОП-Транзистор Одним из недостатков приведенной элементарной ячейки информации является необходимость подведения на все время хранения информации напряжения к затворному электроду. При отключении напряжения питания записанная информация теряется. Этого недостатка можно было бы избежать, если в качестве МДП-транзистора использовать такой транзистор, у которого регулируемым образом можно было бы менять пороговое напряжение VT. Величина порогового напряжения VT определяется уравнением
4 РПЗУ Как видно из этого уравнения, для изменения величины порогового напряжения VT необходимо: а) изменить легирование подложки NA (для изменения объемного положения уровня Ферми φ0, разности paбот выхода φms, заряда акцепторов в области обеднения QВ); б) изменить плотность поверхностных состояний Nss; в) изменить встроенный в диэлектрик заряд Qох; г) изменить напряжение смещения канал подложка VSS (для изменения заряда акцепторов QВ в слое обеднения). Поскольку информацию в ячейку необходимо перезаписывать многократно, случаи а) и б) для этого оказываются непригодными. Случай г) не подходит вследствие того, что при отключении напряжения информация не сохраняется. Таким образом, для реализации энергонезависимого репрограммируемого полупроводникового запоминающего устройства (РПЗУ) необходим МДП транзистор, в котором обратимым образом было бы возможно изменять пороговое напряжение VT за счет изменения встроенного в диэлектрик заряда Qох.
5 Конструкция МНОП-транзистор Наиболее распространенными РПЗУ, в которых реализован этот принцип, являются РПЗУ на основе полевых транзисторов со структурой металл – нитрид – окисел – полупроводник (МНОП транзисторы) На рисунке приведена схема, показывающая основные конструктивные элементы МНОП- транзистора. В МНОП ПТ в качестве подзатворного диэлектрика используется двухслойное покрытие. В качестве первого диэлектрика используется туннельно прозрачный слой (dox < 50 Å) двуокиси кремния. В качестве второго диэлектрика используется толстый (d 1000 Å) слой нитрида кремния. Нитрид кремния Si3N4 имеет глубокие ловушки в запрещенной зоне и значение диэлектрической постоянной в два раза более высокое, чем диэлектрическая постоянная двуокиси кремния SiO2. Ширина запрещенной зоны нитрида Si3N4 меньше, чем ширина запрещенной зоны окисла SiO2.
6 Зонные диаграммы МНОП транзистора в различных режимах работы На рисунке а приведена зонная диаграмма МНОП транзистора. Рассмотрим основные физические процессы, протекающие в МНОП транзисторе при работе в режиме запоминающего устройства. При подаче импульса положительного напряжения +VGS на затвор вследствие разницы в величинах диэлектрических постоянных окисла и нитрида в окисле возникает сильное электрическое поле. Это поле вызывает, как показано на рисунке б, туннельную инжекцию электронов из полупроводника через окисел в нитрид. Инжектированные электроны захватываются на глубине уровня ловушек в запрещенной зоне нитрида кремния, обуславливая отрицательный по знаку встроенный в диэлектрик заряд. После снятия напряжения с затвора инжектированный заряд длительное время хранится на ловушечных центрах, что соответствует существованию встроенного инверсионного канала. При подаче импульса отрицательного напряжения -VGS на затвор происходит туннелирование электронов с ловушек в нитриде кремния в зону проводимости полупроводника, как показано на рисунке в. При снятии напряжения с затвора зонная диаграмма МНОП структуры снова имеет вид, как на рисунке а, и инверсионный канал исчезает. а) напряжение на затворе равно нулю, ловушки не заполнены б;) запись информационного заряда; в) стирание информационного заряда
7 Оценка Величины инжектированного заряда Оценим величину инжектированного заряда, необходимую для переключения МНОП транзистора. Пусть величина ΔVT = 10 В, Подставив численные значения в формулу, получаем ΔNox 3·1011 см-2. Считая, что захват идет в энергетический интервал 1 эВ в запрещенной зоне нитрида и в слой толщиной 100 Å, получаем, что энергетическая плотность объемных ловушек Nt в нитриде должна быть порядка 2·1018 см-3·эВ-1.
8 МОП-Транзистор с плавающим затвором Полевой транзистор с плавающим затвором по принципу работы и устройству похож на МНОП транзистор. Только в транзисторах с плавающим затвором инжектированный заряд хранится на плавающем затворе, находящемся между первым и вторым подзатворными диэлектрическими слоями. Схема, поясняющая устройство МОП ПТ с плавающим затвором, приведена на рисунке б. В качестве материала для плавающего затвора используется поликристаллический кремний, легированный фосфором.
9 Зонная диаграмма МОП ПТ с плавающим затвором На рисунке a приведена зонная диаграмма такого транзистора. Рисунок б поясняет механизм записи информационного заряда путем туннельной инжекции из полупроводника на плавающий затвор. На рисунке в приведена зонная диаграмма МОП ПТ с плавающим затвором после записи заряда и снятия напряжения с затвора. Возможно частичное растекание наполненного информационного заряда из-за туннелирования электронов с плавающего затвора обратно в полупроводник. а) напряжение на затворе VGS равно нулю, плавающий затвор не заряжен; б) процесс записи информационного заряда импульсом напряжения +VGS; в) МОП ПТ при нулевом напряжении на затворе в режиме хранения информационного заряда
10 Основные соотношения для МОП ПТ с плавающим затвором Рассмотрим основные соотношения, определяющие характер накопления инжектированного заряда на плавающем затворе полевого транзистора. Величина заряда Qox(τ) равна: Как видно из зонной диаграммы, инжекция носителей из полупроводника через первый слой окисла на плавающий затвор осуществляется путем прямого туннелирования через трапецеидальный барьер. Величина туннельного тока I(t) описывается соотношением: где I(t) – величала инжекционного тока в момент времени t. Постоянные величины А и В, входящие в уравнение, зависят от типа полупроводника и высоты потенциальных барьеров на границе.
11 Основные соотношения для МОП ПТ с плавающим затвором Накапливаемый на плавающем затворе инжектированный заряд Q(τ) будет вызывать уменьшение напряженности электрического поля Еоx в первом диэлектрике. Величина электрического поля Еох, обуславливающая туннелирование, равна: Из последних трёх уравнений следует, что при малых временах τ наполненный заряд Q(τ) мал и линейно возрастает со временем τ, поскольку поле в окисле Еох и туннельный ток I(t) постоянны. При больших временах наступает насыщение наполнения инжектированного заряда Q(τ). Последние три соотношения позволяют на основе расчета выбрать наиболее оптимальные режимы записи и стирания информационного заряда.
12 Основные Обозначения МДП-транзистор – транзистор, изготовленный по технологии металл-диэлектрик-полупроводник МНОП-транзистор - транзистор, изготовленный по технологии металл-нитрид-окисел-полупроводник ПТ- полевой трпнзистор - Величина инжектированного заряда - Число инжектированных носителей - Удельная ёмкость подзатворного диэлектрика - Толщина окисла
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.