Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемГригорий Попышев
1 Обыкновенные дифференциальные уравнения Лекция 4
2 Уравнение первого порядка Функциональное уравнение F(x,y,y ) = 0 или y = f(x,y), связывающее между собой независимую переменную, искомую функцию y(x) и ее производную y (x), называется дифференциальным уравнением первого порядка.
3 Решение дифференциального уравнения Решением уравнения первого порядка называется всякая функция y= (x), которая, будучи подставлена в уравнение вместе со своей производной y = (x), обращает его в тождество относительно x.
4 Общее решение дифференциального уравнения 1-го порядка Общим решением дифференциального уравнения первого порядка называется такая функция y = (x,C), которая при любом значении параметра C является решением этого дифференциального уравнения. Уравнение Ф(x,y,C) =0, определяющее общее решение как неявную функцию, называется общим интегралом дифференциального уравнения.
5 Уравнение, разрешенное относительно производной Если уравнение 1-го порядка разрешить относительно производной, то оно может быть представлено в виде Его общее решение геометрически представляет собой семейство интегральных кривых, т. е. совокупность линий, соответствующих различным значениям постоянной C.
6 Постановка задачи Коши Задача отыскания решения дифференциального уравнения, удовлетворяющего начальному условию при,называется задачей Коши для уравнения 1-го порядка. Геометрически это означает: найти интегральную кривую дифференциального уравнения, проходящую через данную точку.
7 Уравнение с разделяющимися переменными Дифференциальное уравнение называется уравнением с разделенными переменными. Дифференциальное уравнение 1-го порядка называется уравнением с разделяющимися переменными, если оно имеет вид:. Для решения уравнения делят обе его части на произведение функций, а затем интегрируют.
8 Пример Разделим переменные в уравнении Интегрируем: Имеем:.
9 Понятие однородной функции Функция z=f(x,y) называется однородной порядка k, если при умножении ее аргументов на t получаем: Если k=0, то имеем функцию нулевого порядка. Например, функция нулевого порядка.
10 Однородные уравнения Дифференциальное уравнение первого порядка называется однородным, если его можно привести к виду y = или к виду где и – однородные функции одного порядка.
11 Разрешим уравнение относительно производной : Разделив числитель и знаменатель дроби на, имеем:
12 Интегрируем: Исключая вспомогательную функцию и, окончательно получим: или
13 Линейные уравнения 1-го порядка Дифференциальное уравнение первого порядка называется линейным, если оно содержит и в первой степени, т.е. имеет вид. Решают такое уравнение с помощью подстановки y=uv, где u и v- вспомогательные неизвестные функции, которые находят, подставляя в уравнение вспомогательные функции и на одну из функций налагают определенные условия.
14 Уравнение Бернулли Уравнением Бернулли называется уравнение 1-го порядка, имеющее вид, где и Его, как и линейное уравнение решают с помощью подстановки
15 Линейное уравнение решим с помощью подстановки y=uv, где u и v-вспомогательные неизвестные функции. Приравняем к нулю выражение в скобках: Тогда Найдем v: Реш
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.