Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемАлла Чупыркина
1 Лектор Пахомова Е.Г г. Математический анализ Раздел: Дифференциальное исчисление Тема: Производная функции
2 Глава II.Дифференциальное исчисление функции одной переменной Дифференциальное исчисление – раздел математики, в котором изучаются производные и дифференциалы функций и их применение к исследованию функций. §5. Производная функции 1. Определение производной функции. Необходимое условие существования производной Пусть y = f(x) определена в точке x 0 и некоторой ее окрестности. Придадим x 0 приращение x такое, что x 0 + x D(f). Функция при этом получит приращение f(x 0 ) = f(x 0 + x) – f(x 0 ).
3 ОПРЕДЕЛЕНИЕ. Производной функции y = f(x) в точке x 0 называется предел отношения приращения функции в этой точке к приращению аргумента x, при x 0 (если этот предел существует и конечен), т.е. Обозначают: Производной функции y = f(x) в точке x 0 справа (слева) называется (если этот предел существует и конечен). Обозначают: – производная y = f(x) в точке x 0 справа, – производная y = f(x) в точке x 0 слева.
4 ТЕОРЕМА 1 (необходимое и достаточное условие существо- вания производной). Функция y = f(x) имеет производную в точке x 0 в этой точке существуют и равны между собой производные функции справа и слева. Причем ТЕОРЕМА 2 (необходимое условие существования производ- ной функции в точке). Если функция y = f(x) имеет производную в точке x 0, то функция f(x) в этой точке непрерывна. ДОКАЗАТЕЛЬСТВО Замечание. Непрерывность функции в точке x 0 не является достаточным условием существования в этой точке производной функции. Например, функция y = | x | непрерывна на всей области опре- деления, но не имеет производной в точке x 0 = 0.
5 Соответствие x 0 f (x 0 ) является функцией, определенной на множестве D 1 D(f). Ее называют производной функции y = f(x) и обозначают Операцию нахождения для функции y = f(x) ее производной функции называют дифференцированием функции f(x). УПРАЖНЕНИЕ. Доказать по определению, что (sinx) = cosx, (cosx) = –sinx, x (e x ) = e x, (a x ) = a x lna, x
6 2. Физический и геометрический смысл производной 1) Физический смысл производной. Если функция y = f(x) и ее аргумент x являются физическими величинами, то производная f (x) – скорость изменения величины y относительно величины x. ПРИМЕРЫ. а)Пусть S = S(t) – расстояние, проходимое точкой за время t. Тогда производная S (t 0 ) – скорость в момент времени t 0. б)Пусть q = q(t) – количество электричества, протекающее через поперечное сечение проводника в момент времени t. Тогда q (t 0 ) – скорость изменения количества электричества в момент времени t 0, т.е. сила тока в момент времени t 0. в)Пусть m = m(x) – масса отрезка [a ; x]. Тогда m (x) – скорость изменения массы в точке x 0, т.е. линейная плотность в точке x 0.
7 2) Геометрический смысл производной. Пусть – некоторая кривая, M 0 – точка на кривой. Любая прямая, пересекающая не менее чем в двух точках, называется секущей. Касательной к кривой в точке M 0 называется предельное положение секущей M 0 M 1, если точка M 1 стремится к M 0, двигаясь по кривой. Очевидно, что если касательная к кривой в точке M 0 существует, то она единственная.
8 Рассмотрим кривую y = f(x). Пусть в точке M 0 (x 0 ; f(x 0 )) она имеет невертикальную касатель- ную M 0 N. Таким образом, получили: f (x 0 ) – угловой коэффициент касательной к графику функции y = f(x) в точке M 0 (x 0 ; f(x 0 )). (геометрический смысл производной функции в точке). Уравнение касательной к кривой y = f(x) в точке M 0 (x 0 ; f(x 0 )) можно записать в виде
9 Замечания. 1)Прямая, проходящая через точку M 0 перпендикулярно касательной, проведенной к кривой в точке M 0, называется нормалью к кривой в точке M 0. Т.к. для угловых коэффициентов перпендикулярных прямых справедливо равенство k 1 k 2 = –1, то уравнение нормали к y = f(x) в точке M 0 (x 0 ; f(x 0 )) будет иметь вид, если f (x 0 ) 0. Если же f (x 0 ) = 0, то касательная к кривой y = f(x) в точке M 0 (x 0 ; f(x 0 )) будет иметь вид y = f(x 0 ), а нормальx = x 0.
10 2) Пусть кривая y = f(x) имеет в точке M 0 (x 0 ; f(x 0 )) вертикальную касательную M 0 N, – угол наклона секущей M 0 M 1 к Ox. Таким образом, если кривая y = f(x) имеет в точке M 0 (x 0 ; f(x 0 )) вертикальную касательную, то функция y = f(x) не имеет в точке x 0 производной. Так как в соседних с M 0 точках кривая y = f(x) имеет касательные и их угол наклона к оси Ox стремится к 90 при x 0, то x 0 является для функции f(x) точкой разрыва II рода, причем
11 3. Правила дифференцирования 1)Производная константы равна нулю, т.е. C = 0, где С – константа. ДОКАЗАТЕЛЬСТВО – самостоятельно 2)Производная суммы (разности) равна сумме (разности) производных, т.е. ДОКАЗАТЕЛЬСТВО – самостоятельно 3)Производная произведения находится по правилу: ДОКАЗАТЕЛЬСТВО – самостоятельно Замечание. Формула дифференцирования произведения может быть легко обобщена на случай большего числа множителей. Например,
12 , где С – константа. Говорят: «константа выносится за знак производной». 5) Производная дроби находится по правилу: 6) Если функция (t) имеет производную в точке t, а функция f(u) имеет производную в точке u = (t), то сложная функция y = f( (t)) имеет производную в точке t, причем (правило дифференцирования сложной функции). 7) ТЕОРЕМА 3 (о производной обратной функции). Пусть функция y = f(x) имеет производную в точке x 0, причем f (x 0 ) 0. Если существует обратная функция x = (y), то она имеет производную в точке y 0 = f(x 0 ) и ДОКАЗАТЕЛЬСТВО – самостоятельно
13 УПРАЖНЕНИЯ. 1)Зная, что (sinx) = cosx, (cosx) = –sinx, (e x ) = e x, получить формулы 2)Используя теорему о производной обратной функции, доказать, что
14 По определению и с помощью правил дифференцирования находят производные основных элементарных функций (так называемая «таблица производных», см. на сайте). Производная любой элементарной функции находится с помощью таблицы производных и правил дифференци- рования.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.