Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемЛеонид Журавский
2 Содержание. 1) Понятие бинома Ньютона. 2) Свойства бинома и биномиальных коэффициентов. 3) Примеры решения задач по теме «Бином Ньютона». 4) Выход.
3 Понятие бинома Ньютона. Биномом Ньютона называют разложение вида: Но, строго говоря, всю формулу нельзя назвать биномом, так как «бином» переводится как «двучлен». Кроме того, формула разложения была известна еще до Ньютона, Исаак Ньютон распространил это разложение на случай n
4 Компоненты формулы «бином Ньютона»: правая часть формулы – разложение бинома; – биномиальные коэффициенты, их можно получить с помощью треугольника Паскаля (пользуясь операцией сложения). общий член разложения бинома n-й степени где Т – член разложения; – порядковый номер члена разложения. К содержанию.
5 Свойства бинома и биномиальных коэффициентов. Число всех членов разложения на единицу больше показателя степени бинома, то есть равно (n+l). Сумма показателей степеней a и b каждого члена разложения равна показателю степени бинома, то есть n. Биномиальные коэффициенты членов разложения, равноотстоящих от концов разложения, равны между собой: (правило симметрии).
6 Сумма биномиальных коэффициентов всех членов разложения равна. Сумма биномиальных коэффициентов, стоящих на нечетных местах, равна сумме биномиальных коэффициентов, стоящих на четных местах и равна. Правило Паскаля:.
7 Любой биномиальный коэффициент, начиная со второго, равен произведению предшествующего биномиального коэффициента и дроби. К содержанию.
8 Примеры решения задач по теме «Бином Ньютона». Пример 1 В биномиальном разложении найти член разложения, не содержащий х. Решение: Так как в разложении мы ищем член не содержащий х, то.
9 Пример 2 Доказать, что при любом натуральном n число делится на 9. Доказательство: 1 способ:
10 2 способ: Начнем рассматривать бином в общем виде: Тогда К содержанию. Выход.
11 Презентацию приготовил ученик 11 класса «А»:
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.