Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемНикита Твардовский
1 Биосинтез белка Почти полвека тому назад, в 1953 г., Д. Уотсон и Ф. Крик открыли принцип структурной (молекулярной) организации генного вещества - дезоксирибонуклеиновой кислоты (ДНК). Структура ДНК дала ключ к механизму точного воспроизведения - редупликации - генного вещества. Так возникла новая наука - молекулярная биология.
2 Любая живая клетка способна синтезировать белки, и эта способность представляет одно из наиболее важных и характерных ее свойств. С особенной энергией идет биосинтез белков в период роста и развития клеток. В это время активно синтезируются белки для построения клеточных органоидов, мембран. Способность к синтезу белков присуща не только растущим или секреторным клеткам: любая клетка в течение всей жизни постоянно синтезирует белки, так как в ходе нормальной жизнедеятельности молекулы белков постепенно денатурируются, структура и функции их нарушаются. Любая живая клетка способна синтезировать белки, и эта способность представляет одно из наиболее важных и характерных ее свойств. С особенной энергией идет биосинтез белков в период роста и развития клеток. В это время активно синтезируются белки для построения клеточных органоидов, мембран. Способность к синтезу белков присуща не только растущим или секреторным клеткам: любая клетка в течение всей жизни постоянно синтезирует белки, так как в ходе нормальной жизнедеятельности молекулы белков постепенно денатурируются, структура и функции их нарушаются.
3 Для того чтобы синтезировался белок, информация о последовательности аминокислот в его первичной структуре должна быть доставлена к рибосомам. Этот процесс включает два этапа транскрипцию и трансляцию. Для того чтобы синтезировался белок, информация о последовательности аминокислот в его первичной структуре должна быть доставлена к рибосомам. Этот процесс включает два этапа транскрипцию и трансляцию.
4 Транскрипция Транскрипция(от лат. Transcriptio-переписывание). Для синтеза белка в рибосомы должна быть доставлена программа синтеза, т. е. информация о структуре белка, записанная и хранящаяся в ДНК. Для синтеза белка в рибосомы направляются точные копии этой информации. Это осуществляется с помощью РНК, которые синтезируются на ДНК и точно копируют ее структуру.. Таким образом, информация, содержащаяся в структуре данного гена, как бы переписывается на РНК. Этот процесс называют транскрипцией (лат. "транскрипция" - переписывание). Эти РНК, несущие в рибосомы информацию о составе белков, называют информационными (и-РНК). Для того чтобы понять, каким образом состав и последовательность расположения нуклеотидов в гене могут быть "переписаны" на РНК, вспомним принцип комплементарности, на основании которого построена двухспиральная молекула ДНК.
5 Нуклеотиды одной цепи обусловливают характер противолежащих нуклеотидов другой цепи. Если на одной цепи находится А, то на том же уровне другой цепи стоит Т, а против Г всегда находится Ц. Других комбинаций не бывает. Против каждого нуклеотида одной из цепей ДНК встает комплементарный к нему нуклеотид информационной РНК (в РНК вместо тимидилового нуклеотида (Т) присутствует уридиловый нуклеотид (У). Таким образом, против Г днк встает Ц рнк, против А днк - У рнк, против Т днк - А рнк. В результате образующаяся цепочка РНК по составу и последовательности своих нуклеотидов представляет собой точную копию состава и последовательности нуклеотидов одной из цепей ДНК. Молекулы информационной РНК направляются к месту, где происходит синтез белка, т. е. к рибосомам. Туда же идет из цитоплазмы поток материала, из которого строится белок, т. е. аминокислоты. В цитоплазме клеток всегда имеются аминокислоты, образующиеся в результате расщепления белков пищи.
6 Транспортные РНК Аминокислоты попадают в рибосому не самостоятельно, а в сопровождении транспортных РНК (т-РНК). Молекулы т-РНК невелики - они состоят всего из нуклеотидных звеньев. Их состав и последовательность для некоторых т-РНК уже установлены полностью. При этом выяснилось, что в ряде мест цепочки т-РНК обнаруживаются 4-7 нуклеотидных звеньев, комплементарных друг другу. На рисунке такие участки обозначены буквами А, Б, В, Г. Наличие комплементарных последовательностей в молекуле приводит к тому, что эти участки при достаточном сближении слипаются друг с другом благодаря образованию водородных связей между комплементарными нуклеотидами. В результате возникает сложная петлистая структура, напоминающая по форме листок клевера. К одному из концов молекулы т-РНК присоединяется аминокислота (Д), а в верхушке "листка клевера" находится триплет нуклеотидов (Е), который соответствует по коду данной аминокислоте. Так как существует не менее 20 различных аминокислот, то, очевидно, имеется не менее 20 различных т-РНК: на каждую аминокислоту - своя т-РНК.
7 Трансляция Трансляция (от лат. Translatio- передача). Следующий этап биосинтеза- перевод информации, заключенной в последовательности нуклеотидов молекулы и-РНК в последовательность аминокислот полипептидной цепи. Трансляция (от лат. Translatio- передача). Следующий этап биосинтеза- перевод информации, заключенной в последовательности нуклеотидов молекулы и-РНК в последовательность аминокислот полипептидной цепи.
8 Для того чтобы разобраться в том, как в рибосомах происходит трансляция, т. е. перевод информации с языка нуклеиновых кислот на язык белков, обратимся к рисунку. Рибосомы на рисунке изображены в виде яйцевидных тел, унизывающих и- РНК с левого конца и начинает синтез белка. По мере сборки белковой молекулы рибосома ползет по и-РНК. Когда рибосома продвинется вперед на А, с того же конца на и-РНК входит вторая рибосома, которая, как и первая, начинает синтез и движется вслед за первой рибосомой. Затем на и-РНК вступает третья рибосома, четвертая и т. д. Все они выполняют одну и ту же работу: каждая синтезирует один и тот же белок, запрограммированный на данной и-РНК. Чем дальше вправо продвинулась рибосома по и-РНК, тем больший отрезок белковой молекулы "собран". Когда рибосома достигает правого конца и-РНК, синтез окончен. Рибосома с образовавшимся белком сходит с и-РНК. Затем они расходятся: рибосома - на любую и-РНК (так как она способна к синтезу любого белка; характер белка зависит от матрицы), белковая молекула - в эндоплазматическую сеть и по ней перемещается в тот участок клетки, где требуется данный вид белка. Через короткое время заканчивает работу вторая рибосома, затем третья и т. д. А с левого конца и- РНК на нее вступают все новые и новые рибосомы, и синтез белка идет непрерывно. Число рибосом, умещающихся одновременно на молекуле и-РНК, зависит от длины и-РНК. Так, на молекуле и-РНК, которая программирует синтез белка гемоглобина и длина которой около 1500 А, помещается до пяти рибосом (диаметр рибосомы приблизительно равен 230 А). Группу рибосом, помещающуюся одновременно на одной молекуле и-РНК, называют полирибосомой.
9 Сам механизм "сборки" белковой молекулы в рибосомах осуществляется следующим образом. В каждую рибосому, входящую в состав полирибосомы, т. е. движущуюся по и- РНК, из окружающей среды непрерывным потоком идут молекулы т-РНК с "навешанными" на них аминокислотами. Они проходят, задевая своим кодовым концом место контакта рибосомы с и-РНК, который в данный момент находится в рибосоме. Противоположный конец т-РНК (несущий аминокислоту) оказывается при этом вблизи пункта "сборки" белка. Однако только в том случае, если кодовый триплет т- РНК окажется комплементарным к триплету и- РНК (находящемуся в данный момент в рибосоме), аминокислота, доставленная т-РНК, попадет в состав молекулы белка и отделится от т-РНК. Тотчас же рибосома делает "шаг" вперед по и-РНК на один триплет, а свободная т-РНК выбрасывается из рибосомы в окружающую среду. Здесь она захватывает новую молекулу аминокислоты и несет ее в любую из работающих рибосом. Так постепенно, триплет за триплетом, движется по и-РНК рибосома и растет звено за звеном - полипептидная цепь
10 Конец Выполнил: Марущак Николай 11-2 класс
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.