Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемМихаил Четвертаков
2 sin x = a a) x = ± arcsin a + Пk, k Z b) x = (–1) k arcsin a + Пk, k Z c) x = ± arcsin a + 2Пk, k Z d) x = (–1) k arcsin a + 2Пk, k Z
3 sin x = a a) x = ± arcsin a + Пk, k Z b) x = (–1) k arcsin a + Пk, k Z c) x = ± arcsin a + 2Пk, k Z d) x = (–1) k arcsin a + 2Пk, k Z
4 cos x = a a) x = ± arccos a + Пk, k Z b) x = (–1) k arccos a + Пk, k Z c) x = ± arccos a + 2Пk, k Z d) x = (–1) k arccos a + 2Пk, k Z
5 cos x = a a) x = ± arccos a + Пk, k Z b) x = (–1) k arccos a + Пk, k Z c) x = ± arccos a + 2Пk, k Z d) x = (–1) k arccos a + 2Пk, k Z
6 cos x = a) x = (–1) k + Пk, k Z b) x = ± + Пk, k Z c) x = ± + 2Пk, k Z d) x = ± + 2Пk, k Z
7 cos x = a) x = (–1) k + Пk, k Z b) x = ± + Пk, k Z c) x = ± + 2Пk, k Z d) x = ± + 2Пk, k Z
8 sin x = – a) x = (–1) k+1 + Пk, k Z b) x = ± + Пk, k Z c) x = (–1) k+1 + 2Пk, k Z d) x = (–1) k+1 + Пk, k Z
9 sin x = – a) x = (–1) k+1 + Пk, k Z b) x = ± + Пk, k Z c) x = (–1) k+1 + 2Пk, k Z d) x = (–1) k+1 + Пk, k Z
10 sin x – 1 = 0 a) x = (–1) k + Пk, k Z b) x = П + Пk, k Z c) x = (–1) k+1 + Пk, k Z d) x = + Пk, k Z
11 sin x – 1 = 0 a) x = (–1) k + Пk, k Z b) x = П + Пk, k Z c) x = (–1) k+1 + Пk, k Z d) x = + 2Пk, k Z
12 соs x = 0 a) x = (–1) k + 2Пk, k Z b) x = П + Пk, k Z c) x = (–1) k + Пk, k Z d) x = + Пk, k Z
13 соs x = 0 a) x = (–1) k + 2Пk, k Z b) x = П + Пk, k Z c) x = (–1) k + Пk, k Z d) x = + Пk, k Z
14 tg x = 1 a) x = (–1) k + Пk, k Z b) x = + Пk, k Z c) x = + Пk, k Z d) x = + 2Пk, k Z
15 tg x = 1 a) x = (–1) k + Пk, k Z b) x = + Пk, k Z c) x = + Пk, k Z d) x = + 2Пk, k Z
16 tg x = – 3 a) x = – + Пk, k Z b) x = arctg 3 + Пk, k Z c) x = – arctg 3 + Пk, k Z d) x = – arctg 3 + 2Пk, k Z
17 tg x = – 3 a) x = – + Пk, k Z b) x = arctg 3 + Пk, k Z c) x = – arctg 3 + Пk, k Z d) x = – arctg 3 + 2Пk, k Z
18 ctg x = – a) x = – + Пk, k Z b) x = – + Пk, k Z c) x = + Пk, k Z d) x = + 2Пk, k Z
19 ctg x = – a) x = – + Пk, k Z b) x = – + Пk, k Z c) x = + Пk, k Z d) x = + 2Пk, k Z
21 ДОМАШНЯЯ РАБОТА 1.2sinx + 1 = 0, x Є [0; 2π]. 2.cos(2π – x) + sin(π/2 + x) = 2. 3.(sinx + cosx) 2 = 1 + sinxcosx, x Є [0; 2π]. 4.sin(π/2 – x) = sin(– π/4). 5.4cos 2 x – 1 = 0. 6.sin 2 x – 6 sinx = 0. 7.tgx + 3 = 0, x Є [–2π; 0]. 8.(sinx – 1)(tgx + 1) = sin 2 x – sinx – 1 = sinx + 3 cosx = cos 2 x – 3sinxcosx + 1 = 0
22 1.2cosx – 1 = 0, x Є [0; 2π]. 2.2cos(π/4 – 3x) = 2. 3.sin3xcosx – sinxcos3x = 3/2. 4.sin(π/2 – x) = sin(– π/4). 5.2cos 2 x + sinx + 1 = sin 2 x – sin2x = tg 2 x – 9tgx – 5 = 0. 8.(sinx + 1)(tgx + 3) = 0. 9.cos5x – cos3x = 0.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.