Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемЗинаида Багина
3 ПИФАГОР САМОССКИЙ (ок. 580 – ок. 500 г. до н.э.)
4 В современных учебниках теорема сформулирована так:
5 Как записать теорему Пифагора для прямоугольного треугольника АВС с катетами а, b и гипотенузой с ?
6 Приведем различные формулировки теоремы Пифагора в переводе с греческого, латинского и немецкого языков. У Евклида эта теорема гласит (дословный перевод): "В прямоугольном треугольнике квадрат стороны, натянутой над прямым углом, равен квадратам на сторонах, заключающих прямой угол". Латинский перевод арабского текста Аннаирици (около 900 г. до н. э. ), сделанный Герхардом Клемонским (начало 12 в.), в переводе на русский гласит: "Во всяком прямоугольном треугольнике квадрат, образованный на стороне, натянутой над прямым углом, равен сумме двух квадратов, образованных на двух сторонах, заключающих прямой угол".
7 В Geometria Culmonensis (около 1400 г.) в переводе теорема читается так : "Итак, площадь квадрата, измеренного по длинной стороне, столь же велика, как у двух квадратов, которые измерены по двум сторонам его, примыкающим к прямому углу". В первом русском переводе евклидовых "Начал", сделанном Ф. И. Петрушевским, теорема Пифагора изложена так: "В прямоугольных треугольниках квадрат из стороны, противолежащей прямому углу, равен сумме квадратов из сторон, содержащих прямой угол".
8 Исторический обзор начнем с древнего Китая. Здесь особое внимание привлекает математическая книга Чу-пей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: "Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4". В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.
9 Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея). По мнению Кантора гарпедонапты, или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5.
10 Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом ко времени Хаммураби, т. е. к 2000 г. до н. э., приводится приближенное вычисление гипотенузы прямоугольного треугольника. Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере в некоторых случаях. Геометрия у индусов, как и у египтян и вавилонян, была тесно связана с культом. Весьма вероятно, что теорема о квадрате гипотенузы была известна в Индии уже около 18 века до н. э.
11 Интересна история теоремы Пифагора. Хотя эта теорема и связывается с именем Пифагора, она была известна задолго до него. В вавилонских текстах она встречается за 1200 лет до Пифагора. По-видимому, он первым нашёл её доказательство. Сохранилось древнее предание, что в честь своего открытия Пифагор принёс в жертву богам быка, по другим свидетельствам – даже сто быков. Это, однако, противоречит сведениям о моральных и религиозных воззрениях Пифагора. В литературных источниках можно прочитать, что он "запрещал даже убивать животных, а тем более ими кормиться, ибо животные имеют душу, как и мы". В связи с этим более правдоподобной можно считать следующую запись: "… когда он открыл, что в прямоугольном треугольнике гипотенуза имеет соответствие с катетами, он принес в жертву быка, сделанного из пшеничного теста". На протяжении последующих веков были найдены другие доказательства теоремы Пифагора. В настоящее время их насчитывается более ста. Большинство способов её доказательства сводятся к разбиению квадратов на более мелкие части.
12 Т е о р е м а. В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
13 Иногда бывают случаи, когда ученики помнят формулировку теоремы, но забывают с чего начать доказательство. Чтобы этого не произошло с вами, предлагаю рисунок – опорный сигнал и, надеюсь, он надолго останется в вашей памяти. Отрубил Иван-царевич дракону голову, а у него две новые выросли. На математическом языке это означает: провели в Δ АВС высоту CD, и образовалось два новых прямоугольных треугольника ADC и BDC. Вспомнив этот рисунок, вы вспомните дополнительное построение и начало доказательства теоремы.
14 Если дан нам треугольник И притом с прямым углом, То квадрат гипотенузы Мы всегда легко найдём: Катеты в квадрат возводим, Сумму степеней находим И таким простым путём К результату мы придём.
15 З а д а ч а 1
16 Р е ш е н и е Δ АВС – прямоугольный с гипотенузой АВ, по теореме Пифагора: АВ 2 = АС 2 + ВС 2, АВ 2 = , АВ 2 = , АВ 2 = 100, АВ = 10.
17 Задача из учебника "Арифметика" Леонтия Магницкого " Случися некому человеку к стене лестницу прибрати, стены же тоя высота есть 117 стоп. И обреете лестницу долготью 125 стоп. И ведати хочет, колико стоп сея лестницы нижний конец от стены отстояти имать."
18 Задача индийского математика XII века Бхаскары "На берегу реки рос тополь одинокий. Вдруг ветра порыв его ствол надломал. Бедный тополь упал. И угол прямой С теченьем реки его ствол составлял. Запомни теперь, что в этом месте река В четыре лишь фута была широка Верхушка склонилась у края реки. Осталось три фута всего от ствола, Прошу тебя, скоро теперь мне скажи: У тополя как велика высота?"
19 О т е о р е м е П и ф а г о р а Суть истины вся в том, что нам она – навечно, Когда хоть раз в прозрении её увидим свет, И теорема Пифагора через столько лет Для нас. Как для него, бесспорна, безупречна … (Отрывок из стихотворения А. Шамиссо)
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.