Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемЕлена Башуткина
2 Логика – это наука о способах рассуждения, то есть о том, как делать верные умозаключения, пользуясь доступной информацией.
3 от перестановки мест аргументов результат не изменяется A & B = B & A существует следующий закон A & (B & C) = (A & B) & C Также существуют некоторые тождества, опирающиеся на особые свойства функции, например: 1) A & (~A) = ЛОЖЬ 2) (~A) & (~B) = ~ (A v B) Аналогично, сложение и логическое «ИЛИ»: от перестановки мест аргументов результат не изменяется A v B = B v A существует следующий закон (A v B) v С = A v (B v C) можно выносить общий множитель за скобки (A & B) v (С & B) = B & (A v C) И также некоторые собственные законы: 1) A v (~A) = ИСТИНА 2) (~A) v (~B) = ~ (A & B) от перестановки мест аргументов результат не изменяется A & B = B & A существует следующий закон A & (B & C) = (A & B) & C Также существуют некоторые тождества, опирающиеся на особые свойства функции, например: 1) A & (~A) = ЛОЖЬ 2) (~A) & (~B) = ~ (A v B) Аналогично, сложение и логическое «ИЛИ»: от перестановки мест аргументов результат не изменяется A v B = B v A существует следующий закон (A v B) v С = A v (B v C) можно выносить общий множитель за скобки (A & B) v (С & B) = B & (A v C) И также некоторые собственные законы: 1) A v (~A) = ИСТИНА 2) (~A) v (~B) = ~ (A & B)
4 Понятие логики как науки появилось ещё в XIX в., т.е. задолго до появления науки информатики и компьютеров. Элементы математической логики можно найти уже в работах древнегреческих философов. В XVII в. Г. В. Лейбниц высказал идею о том, что рассуждения могут быть сведены к механическому выполнению определенных действий по установленным правилам. Однако как самостоятельный раздел математики логика начала формироваться только с середины XIX в..
5 (X1 & X2 & (~X3)) v (X1 & (~X2) & X3) v (X1 & X2 & X3) – это выражение принимает значение 1 при тех же значениях, что и исходная функция. Полученное выражение можно упростить. (X1 & X2 & (~X3)) v (X1 & (~X2) & X3) v (X1 & X2 & X3) = X1 & ((X2 & (~X3)) v ((~X2) & X3) v (X2 & X3)) = X1 & ((X2 & (~X3)) v X3 & ((~X2) v X2)) = X1 & ((X2 & (~X3)) v X3) – эта формула несколько длиннее исходной, но намного проще полученной в первый раз. Дальнейшие пути упрощения более сложны и представляют большой интерес для проектировщиков интегральных микросхем, т.к. меньшее число операций требует меньшее число элементов, их которых состоит ИС.
6 После изготовления первого компьютера стало ясно, что при его производстве возможно использование только цифровых технологий – ограничение сигналов связи единицей и нулём для большей надёжности и простоты архитектуры ПК. Благодаря своей бинарной природе, математическая логика получила широкое распространение в ВТ и информатике. Были созданы электронные эквиваленты логических функций, что позволило применять методы упрощения булевых выражений к упрощению электрической схемы. Кроме того, благодаря возможности нахождения исходной функции по таблице позволило сократить время поиска необходимой логической схемы. В программировании логика незаменима как строгий язык и служит для описания сложных утверждений, значение которых может определить компьютер. После изготовления первого компьютера стало ясно, что при его производстве возможно использование только цифровых технологий – ограничение сигналов связи единицей и нулём для большей надёжности и простоты архитектуры ПК. Благодаря своей бинарной природе, математическая логика получила широкое распространение в ВТ и информатике. Были созданы электронные эквиваленты логических функций, что позволило применять методы упрощения булевых выражений к упрощению электрической схемы. Кроме того, благодаря возможности нахождения исходной функции по таблице позволило сократить время поиска необходимой логической схемы. В программировании логика незаменима как строгий язык и служит для описания сложных утверждений, значение которых может определить компьютер.
7 АĀ ИЛ ЛИ ИНВЕРСИЯ АВ АѴВАѴВ ИИИ ИЛИ ЛИИ ЛЛЛ ДИЗЪЮНКЦИЯ АВА&ВА&В ИИИ ИЛЛ ЛИЛ ЛЛЛ КОНЪЮНКЦИЯ
8 АВА В ИИИ ИЛЛ ЛИИ ЛЛИ ИМПЛИКАЦИЯ АВА~В ИИИ ИЛЛ ЛИЛ ЛЛИ ЭКВИВАЛЕНТНОСТЬ АВА хоr В ИИЛ ИЛИ ЛИИ ЛЛЛ ИСКЛЮЧАЮЩЕЕ «ИЛИ»
9 Итак, логика возникла задолго до появления компьютеров и возникла она в результате необходимости в строгом формальном языке. Были построены функции – удобное средство для построения сложных утверждений и проверки их истинности. Оказалось, что такие функции обладают аналогичными свойствами с алгебраическими операторами. Это дало возможность упрощать исходные выражения. Особое свойство логических выражений – возможность их нахождения по значениям. Это получило широкое распространение в цифровой электронике, где используются логические элементы, и программировании.
10 «Компьютер» Ю. Л. Кетков, изд. «Дрофа» 1997 г. «Математика» Ю. Владимиров, изд. «Аванта+» 1998 г.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.