Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемВиталий Росчупкин
1 Многогранник называется правильным, если все его грани – равные между собой правильные многоугольники, из каждой его вершины выходит одинаковое число ребер и все двугранные углы равны. Многогранник называется правильным, если все его грани – равные между собой правильные многоугольники, из каждой его вершины выходит одинаковое число ребер и все двугранные углы равны.
2 Тетраэдр Тетраэдр (tetra – четыре, hedra – грань). Правильный тетраэдр – правильный четырехгранник, то есть тетраэдр с равными ребрами, представляет собой правильный многогранник, все грани которого – правильные треугольники и из каждой вершины которого выходит ровно три ребра Тетраэдр (tetra – четыре, hedra – грань). Правильный тетраэдр – правильный четырехгранник, то есть тетраэдр с равными ребрами, представляет собой правильный многогранник, все грани которого – правильные треугольники и из каждой вершины которого выходит ровно три ребра У него 4 вершины,4 грани,6 ребер У него 4 вершины,4 грани,6 ребер Сумма плоских углов при каждой вершине равна 180 градусов Сумма плоских углов при каждой вершине равна 180 градусов
3 Гексаэдр(куб) Гексаэдр (куб, hexa – шесть). Гексаэдр – правильный многогранник, все грани которого – квадраты, и из каждой вершины выходит три ребра. Гексаэдр (куб, hexa – шесть). Гексаэдр – правильный многогранник, все грани которого – квадраты, и из каждой вершины выходит три ребра. У него 6 граней,8 вершин,12 ребер У него 6 граней,8 вершин,12 ребер Сумма плоских углов при каждой вершине равна 270 градусов Сумма плоских углов при каждой вершине равна 270 градусов
4 Октаэдр Октаэдр. Это правильный многогранник, все грани которого – правильные треугольники и к каждой вершине прилегают четыре грани Октаэдр. Это правильный многогранник, все грани которого – правильные треугольники и к каждой вершине прилегают четыре грани У него 8 граней,12 ребер,6вершин У него 8 граней,12 ребер,6вершин
5 Додекаэдр Существует правильный многогранник, у которого все грани правильные пятиугольники и из каждой вершины выходит 3 ребра. Этот многогранник имеет 12 граней, 30 ребер и 20 вершин и называется додекаэдром (dodeka – двенадцать). Существует правильный многогранник, у которого все грани правильные пятиугольники и из каждой вершины выходит 3 ребра. Этот многогранник имеет 12 граней, 30 ребер и 20 вершин и называется додекаэдром (dodeka – двенадцать). Сумма плоских углов при каждой вершине равна 324 градуса Сумма плоских углов при каждой вершине равна 324 градуса
6 Икосаэдр (состоит из 20 треугольников) (состоит из 20 треугольников) В каждой вершине икосаэдра В каждой вершине икосаэдра сходятся пять граней. сходятся пять граней. Существует правильный многогранник, у которого все грани – правильные треугольники, и из каждой вершины выходит 5 ребер. Этот многогранник имеет 20 граней, 30 ребер, 12 вершин и называется икосаэдром (icosi – двадцать). Существует правильный многогранник, у которого все грани – правильные треугольники, и из каждой вершины выходит 5 ребер. Этот многогранник имеет 20 граней, 30 ребер, 12 вершин и называется икосаэдром (icosi – двадцать). Сумма плоских углов при каждой вершине равна 300 градусов Сумма плоских углов при каждой вершине равна 300 градусов
Еще похожие презентации в нашем архиве:
© 2025 MyShared Inc.
All rights reserved.
Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемВиталий Росчупкин
1 Многогранник называется правильным, если все его грани – равные между собой правильные многоугольники, из каждой его вершины выходит одинаковое число ребер и все двугранные углы равны. Многогранник называется правильным, если все его грани – равные между собой правильные многоугольники, из каждой его вершины выходит одинаковое число ребер и все двугранные углы равны.
2 Тетраэдр Тетраэдр (tetra – четыре, hedra – грань). Правильный тетраэдр – правильный четырехгранник, то есть тетраэдр с равными ребрами, представляет собой правильный многогранник, все грани которого – правильные треугольники и из каждой вершины которого выходит ровно три ребра Тетраэдр (tetra – четыре, hedra – грань). Правильный тетраэдр – правильный четырехгранник, то есть тетраэдр с равными ребрами, представляет собой правильный многогранник, все грани которого – правильные треугольники и из каждой вершины которого выходит ровно три ребра У него 4 вершины,4 грани,6 ребер У него 4 вершины,4 грани,6 ребер Сумма плоских углов при каждой вершине равна 180 градусов Сумма плоских углов при каждой вершине равна 180 градусов
3 Гексаэдр(куб) Гексаэдр (куб, hexa – шесть). Гексаэдр – правильный многогранник, все грани которого – квадраты, и из каждой вершины выходит три ребра. Гексаэдр (куб, hexa – шесть). Гексаэдр – правильный многогранник, все грани которого – квадраты, и из каждой вершины выходит три ребра. У него 6 граней,8 вершин,12 ребер У него 6 граней,8 вершин,12 ребер Сумма плоских углов при каждой вершине равна 270 градусов Сумма плоских углов при каждой вершине равна 270 градусов
4 Октаэдр Октаэдр. Это правильный многогранник, все грани которого – правильные треугольники и к каждой вершине прилегают четыре грани Октаэдр. Это правильный многогранник, все грани которого – правильные треугольники и к каждой вершине прилегают четыре грани У него 8 граней,12 ребер,6вершин У него 8 граней,12 ребер,6вершин
5 Додекаэдр Существует правильный многогранник, у которого все грани правильные пятиугольники и из каждой вершины выходит 3 ребра. Этот многогранник имеет 12 граней, 30 ребер и 20 вершин и называется додекаэдром (dodeka – двенадцать). Существует правильный многогранник, у которого все грани правильные пятиугольники и из каждой вершины выходит 3 ребра. Этот многогранник имеет 12 граней, 30 ребер и 20 вершин и называется додекаэдром (dodeka – двенадцать). Сумма плоских углов при каждой вершине равна 324 градуса Сумма плоских углов при каждой вершине равна 324 градуса
6 Икосаэдр (состоит из 20 треугольников) (состоит из 20 треугольников) В каждой вершине икосаэдра В каждой вершине икосаэдра сходятся пять граней. сходятся пять граней. Существует правильный многогранник, у которого все грани – правильные треугольники, и из каждой вершины выходит 5 ребер. Этот многогранник имеет 20 граней, 30 ребер, 12 вершин и называется икосаэдром (icosi – двадцать). Существует правильный многогранник, у которого все грани – правильные треугольники, и из каждой вершины выходит 5 ребер. Этот многогранник имеет 20 граней, 30 ребер, 12 вершин и называется икосаэдром (icosi – двадцать). Сумма плоских углов при каждой вершине равна 300 градусов Сумма плоских углов при каждой вершине равна 300 градусов
Еще похожие презентации в нашем архиве:
© 2025 MyShared Inc.
All rights reserved.