Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемАнатолий Мамонтов
2 (от лат. auctio продажа с публичного торга) способ продажи отдельных видов товаров в виде публичного торга, проводимого в заранее установленном месте и в заранее обозначенное время с правом предварительного осмотра товаров. (от лат. auctio продажа с публичного торга) способ продажи отдельных видов товаров в виде публичного торга, проводимого в заранее установленном месте и в заранее обозначенное время с правом предварительного осмотра товаров.
3 подготовка, подготовка, осмотр товаров, осмотр товаров, аукционный торг, аукционный торг, оформление и исполнение аукционной сделки. оформление и исполнение аукционной сделки.
4 Система уравнений это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких переменных. Решением системы уравнений называется упорядоченный набор чисел (значений переменных), при подстановке которых вместо переменных каждое из уравнений обращается в верное равенство.
5 В древневавилонских текстах, написанных в III – II тысячелетиях до н.э., содержится немало задач, решаемых с помощью составления систем уравнений, в которые входят и уравнения второй степени. Например, задача Диофанта: «Площади двух своих квадратов я сложил:. Сторона второго квадрата равна стороны первого и еще 5. Соответствующая система уравнений в современной записи имеет вид:
6 Строятся графики обоих уравнений, находятся точки пересечения графиков. X Y
7 Выражают из одного уравнения одну переменную через другую Выражают из одного уравнения одну переменную через другую Подставляют полученное выражение в другое уравнение Подставляют полученное выражение в другое уравнение Решают полученное уравнение с одной переменной Решают полученное уравнение с одной переменной Находят значение второй переменной Находят значение второй переменной Записывают ответ Записывают ответ
8 Умножают обе части одного или обоих уравнений на какое-либо число так, что при последующем сложении какие-то слагаемые взаимно уничтожить Умножают обе части одного или обоих уравнений на какое-либо число так, что при последующем сложении какие-то слагаемые взаимно уничтожить Складывают почленно полученные уравнения Складывают почленно полученные уравнения Решают полученное уравнение с одной переменной Решают полученное уравнение с одной переменной Находят значения другой переменной Находят значения другой переменной
9 Проверяют, является ли решением системы уравнений пара чисел (0;0) Делят каждое слагаемое одного уравнения на большую степень одной из переменных Вводят новую переменную Решают уравнение относительно новой переменной Выражают одну переменную через другую Решают новое уравнение с одной переменной Находят значение второй переменной
10 Обозначим дробь х/у через t, получим дробно-рациональное уравнение относительно t. Решая полученное уравнение, находим значения t, и выражаем либо х, либо у через вторую переменную. Подставляя полученное выражение во второе уравнение, решаем уравнение с одной переменной. Обозначим дробь х/у через t, получим дробно-рациональное уравнение относительно t. Решая полученное уравнение, находим значения t, и выражаем либо х, либо у через вторую переменную. Подставляя полученное выражение во второе уравнение, решаем уравнение с одной переменной.
11 Применяя способ группировки в первом уравнении, получим (2х-1)(3х+у)=0. Произведение двух множителей равно 0, когда хотя бы один из множителей равен 0: 2х-1=0 или 3х+у=0. Выражаем одну переменную через другую, подставляем полученные выражения во второе уравнение и получаем уравнение с одной переменной.
12 Прибавим к обеим частям первого уравнения ху, получим (х+у) 2 =4+ху. Обозначим х+у=t, ху=k. Решаем полученную систему относительно переменных t и k. Находим значения х и у.
13 Какой способ нужно применить для решения системы:
14 Какой способ нужно применить для решения системы: Какой способ нужно применить для решения системы:
15 Какой способ нужно применить для решения системы:
19 Желаю удачи!
20 Домашнее задание Решить систему Диофанта:
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.