Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемПотап Юсов
1 Презентация темы «Решение задач с параметрами»
2 Предисловие В последнее время в билетах вступительных экзаменов по математике, в ЕГЭ обязательно встречаются задачи с параметрами. Однако эта тема не входит в программу школьного курса за исключением классов с углублённым изучением математики. Существует мнение, что решение задачи с параметрами не выходит за пределы программы школьного курса математики. Имеется в виду, что если ученик или абитуриент владеет школьной программой, то он может самостоятельно, без специальной подготовки справится с задачей с параметрами. На самом деле решить задачу с параметрами может учащийся, который прошел специальную целенаправленную подготовку. Поэтому в школьной математике этим задачам должно уделяться внимание. В классах с углублённым изучением математики параметрам уделяется достаточно внимания, начиная с решения линейных уравнений. При изучении каждой темы «углублёнки» можно найти время для решения задач с параметрами. Чего нельзя сказать об общеобразовательных классах и классах с гуманитарным уклоном. Поэтому я предлагаю учителям, работающим в неспециализированных выпускных классах перед итоговым повторением уделить несколько часов решению задач с параметрами
3 Занятие 1 Главное, что должен усвоить школьник это то, что параметр – это число, хоть и неизвестное, но фиксированное, имеющее двойственную природу. После этих вступительных слов можно спросить у школьников встречались ли они с параметрами. Это линейная функция y=kx+b, где x и y – переменные, k и b – параметры; квадратное уравнение ax 2 +bx+c=0, где x - переменная a, b, c, - параметры. Задачи надо начинать решать с очень простых, постепенно усложняя их.
4 Пример 1. Сравнить –а и 5а Решение: 1) если а 0, 5a 5a 2) если а=0, то –а=0, 5а=0, значит –а=5а 3) если а>0, то –а 0, значит –а0, то–а
5 Пример 2. Решить уравнение ах=2 Решение: 1) если а=0, то 0х=2, решений нет 2) если а0, то х= Ответ: если а=0, то решений нет если а0, то х=
6 Пример 3 Решить уравнение (а 2 -9)х=а+3 Решение: 1) если а=3, то 0х=6, решений нет 2) если а=-3, то 0х=0, х 3) если а±3, то а 2 -90, Ответ: если а=3, то решений нет если а=-3, то x если а±3, то
7 Пример 4 Решить неравенство: ах0, то 2) если а0, то х< если а
8 Пример 5 Решить уравнение Решение: Ответ: если а=-3, то решений нет если а-3, то х=а.
9 Пример 6 Решить уравнение Решение: 1) если а=-1, то -2х+1+1=0; х=1 2) если а-1,то х=1 или Ответ: если а=-1, то х=1 если а-1,то х=1 или
10 Пример 7 Решить уравнение Решение: Ответ: если b-4, то x=b.
11 Пример 8 Решить уравнение Решение: 1) если а0, то х=1 2) если а=0, то x значит х=1 или х=-1 Ответ: если а0, то х=1 если а=0, то х=±1
12 Пример 9 Решить неравенство Решение: 1) a) если b=1, то б) если b=-1, то 2) если b±1, то неравенство квадратное
13 a)
14 б) учитывая, что при то Ответ: если b=1, то если b=-1, то если то
15 Рассмотренные выше задачи требовалось просто решить. В следующих задачах будет поставлено какое-то более «узкое», конкретное условие.
16 Пример 10 При каких а уравнение имеет единственное решение? Решение: 1) если а=0, то х=3 2) если а0, то уравнение квадратное и оно имеет единственное решение при D=0 D=1-12a Ответ: при а=0 или а=
17 Пример 11 При каких а уравнение имеет единственное решение? Решение: 1) если а=2, то решений нет 2) если а2, то уравнение имеет единственное решение при D=0 Ответ: при а=5
18 Задачи для самостоятельного домашнего решения с ответами для самоконтроля 1)При каких а уравнение имеет решения, найти их при 2) Решить уравнение: a) (при а=1 или а=3 решений нет; при а1 и а3 х=а)
19 б) (при а=-2 решений нет; при а-2 х=2) 3) При каких а уравнение имеет ровно три корня (при )
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.