Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемДмитрий Мушкетов
1 Получим систему (1;0;–1) n Вектор нормали плоскости СDА 1 : Дан прямоугольный параллелепипед ABCDA 1 B 1 C 1 D 1, длины ребер которого АВ = 2, AD = AA 1 = 1. Найдите угол между плоскостями CD 1 B 1 и CDA 1. C B A D B1B1 C1C1 D1D1 A1A х yz 2 11 (0;2;0) Радиус-вектор имеет такие же координаты, как и его конец.CD(0;2;0) CB 1 (1;0;1) (1;0;1)(1;0;1)(1;0;1)(1;0;1) Найдем вектор нормали плоскости СDА 1. Пусть вектор нормали n {x;y;z}. Вектор, перпендикулярный плоскости, будет перпендикулярен любой прямой, лежащей в этой плоскости. Тогда, CDn CB 1 n CDn = 0 значит, CB 1 n = 0 значит, Эта система имеет бесконечное множество решений, так как векторов, перпендикулярных плоскости СDА 1, бесконечно n много. Выберем из данного множества ненулевой вектор n, положив х = 1, тогда у = 0, z = – 1
2 Получим систему (2;1;–2) s Вектор нормали плоскости СD 1 А 1 : Дан прямоугольный параллелепипед ABCDA 1 B 1 C 1 D 1, длины ребер которого АВ = 2, AD = AA 1 = 1. Найдите угол между плоскостями CD 1 B 1 и CDA 1. C B A D B1B1 C1C1 D1D1 A1A х yz 2 11 (0;2;1) Радиус-вектор имеет такие же координаты, как и его конец. CD 1 (0;2;1) CB 1 (1;0;1) (1;0;1)(1;0;1)(1;0;1)(1;0;1) Найдем вектор нормали плоскости СD 1 В 1. Пусть вектор нормали s {x;y;z}. Вектор, перпендикулярный плоскости, будет перпендикулярен любой прямой, лежащей в этой плоскости. Тогда, CD 1 s CB 1 s CD 1 s = 0 значит, CB 1 s = 0 значит, (0;2;0) Из (2) Из (2) Эта система имеет бесконечное множество решений, так как векторов, перпендикулярных плоскости СD 1 B 1, бесконечно s много. Выберем из данного множества ненулевой вектор s, положив х = 2, тогда у = 1, z = – 2 «–»
3 (1;0;–1) n (2;1;–2) s 2
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.