Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемНаталья Щелконогова
1 Теорема Фалеса
2 Через середину стороны AB, треугольника ABC, точку M, провели прямую, параллельную стороне AC, эта прямая пересекает сторону BC в точке N. Докажем, что BN=NC Рассмотрим задачу A B C MN
3 Решение задачи Доказать: BN=NC Дано: ABC – треугольник, AM=MB, BM||ND A B C MN Доказательство 1. Дополнительное построение: через точку С проведем прямую параллельную AB AM=MB (по условию), AM=CD (свойство параллелограмма), следовательно MB=CD (по второму признаку) 6. BN=NC D
4 Теорема Фалеса Если на одной из двух прямых отложить последовательно несколько равных отрезков и через из концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки. A1A1 A2A2 A3A3 A4A4 B1B1 B2B2 B3B3 B4B4
5 Теорема Фалеса Доказательство 1. Рассмотрим два случая 2. Первый случай, когда две прямые параллельны A1A1 A2A2 A3A3 A4A4 B1B1 B2B2 B3B3 B4B4 3. Докажем что B 1 B 2 =B 2 B 3 4. A 1 A 2 = B 1 B 2, A 2 A 3 = B 2 B 3 (по свойству параллелограмма) 5. B 1 B 2 =B 2 B 3
6 Теорема Фалеса Доказательство 1. Второй случай, когда две прямые не параллельны 3. Через точку В 4 проведем прямую параллельную l, она пересечет прямые A 3 B 3 и A 2 B 2 в некоторых точках C и D 4. Как уже доказано B 4 C=CD 5. Рассмотрим треугольник B 4 B 2 D A1A1 A2A2 A3A3 A4A4 B1B1 B2B2 B3B3 B4B4 l C D 5. Как нами было доказано в задаче, предшествующей теореме B 4 B 3 =B 3 B 2 6. Аналогично можно доказать что B 3 B 2 =B 2 B 1
7 Решение задач Произвольный отрезок разделить на 3 равные части
8 Решение задач Решение 1. Через точку A проведем прямую l AB A1A1 A2A2 A3A3 l 2. От точки A отложим 3 равных отрезка 3. Соединим точки A 3 и B 4. Через точки A 1 и A 2 проведем прямые параллельные A 3 B 5. Отрезок AB разделён на 3 равные части
9 Домашнее задание
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.