Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемПотап Панкрашев
1 «Знаменитая теорема Пифагора» Авторы: Рожкова О., Лактионова С.
2 Цели: Цели: Найти древние способы доказательств теоремы Пифагора; Найти древние способы доказательств теоремы Пифагора; Познакомить с наиболее интересными из них. Познакомить с наиболее интересными из них.
3 Знаменитая теорема Пифагора и ее способы доказательстваЗнаменитая теорема Пифагора и ее способы доказательства С глубокой древности математики находят все новые и новые доказательства теоремы Пифагора, все новые и новые замыслы ее доказательств. Таких доказательств – более или менее строгих, более или менее наглядных – известно более полутора сотен, но стремление к преумножению их числа сохранилось. Думаю, что самостоятельное «открытие» доказательств теоремы Пифагора будет полезно и современным школьникам. Рассмотрим некоторые примеры доказательств, которые могут подсказать направления таких поисков. Рассмотрим некоторые примеры доказательств, которые могут подсказать направления таких поисков. Доказательства, основанные на использовании понятия равновеликости фигур. При этом можно рассмотреть доказательства, в которых квадрат, построенный на гипотенузе данного прямоугольного треугольника «складывается» из таких же фигур, что и квадраты, построенные на катетах. Можно рассматривать и такие доказательства, в которых применяется перестановка слагаемых фигур и учитывается ряд новых идей. На рис. 2 изображено два равных квадрата. Длина сторон каждого квадрата равна a + b. Каждый из квадратов разбит на части, состоящие из квадратов и прямоугольных треугольников. Ясно, что если от площади квадрата отнять учетверенную площадь прямоугольного треугольника с катетами a, b, то останутся равные площади, т. е. c2 = a2 + b2. Впрочем, древние индусы, которым принадлежит это рассуждение, обычно не записывали его, а сопровождали чертеж лишь одним словом: «смотри!» Вполне возможно, что такое же доказательство предложил и Пифагор.
4 Аддитивные доказательства. Аддитивные доказательства. Эти доказательства основаны на разложении квадратов, построенных на катетах, на фигуры, из которых можно сложить квадрат, построенный на гипотенузе. Эти доказательства основаны на разложении квадратов, построенных на катетах, на фигуры, из которых можно сложить квадрат, построенный на гипотенузе. Доказательство Энштейна (рис. 3) основано на разложении квадрата, построенного на гипотенузе, на 8 треугольников. Доказательство Энштейна (рис. 3) основано на разложении квадрата, построенного на гипотенузе, на 8 треугольников. Здесь: ABC – прямоугольный треугольник с прямым углом C; CОMN; CK^MN; PO||MN; EF||MN. Здесь: ABC – прямоугольный треугольник с прямым углом C; CОMN; CK^MN; PO||MN; EF||MN. Самостоятельно докажите попарное равенство треугольников, полученных при разбиении квадратов, построенных на катетах и гипотенузе. Самостоятельно докажите попарное равенство треугольников, полученных при разбиении квадратов, построенных на катетах и гипотенузе. На рис. 4 приведено доказательство теоремы Пифагора с помощью разбиения ан-Найризия – средневекового багдадского комментатора «Начал» Евклида. В этом разбиении квадрат, построенный на гипотенузе, разбит на 3 треугольника и 2 четырехугольника. Здесь: ABC – прямоугольный треугольник с прямым углом C; DE = BF. На рис. 4 приведено доказательство теоремы Пифагора с помощью разбиения ан-Найризия – средневекового багдадского комментатора «Начал» Евклида. В этом разбиении квадрат, построенный на гипотенузе, разбит на 3 треугольника и 2 четырехугольника. Здесь: ABC – прямоугольный треугольник с прямым углом C; DE = BF.
5 Результат: Существует более ста доказательств теоремы Пифагора; Существует более ста доказательств теоремы Пифагора; Наиболее интересные и дошедшие до нашего времени были предложены нами; Наиболее интересные и дошедшие до нашего времени были предложены нами; Теорема Пифагора известна каждому школьнику и практически применима везде. Теорема Пифагора известна каждому школьнику и практически применима везде.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.