Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемЖанна Царева
1 Карл Гаусс ( ) Гаусса называли королем математиков Работа учителя ГОУСОШ 1315 г Москвы Мирсалимовой Е.Н.
2 Карл Гаусс ( ) Немецкий математик, астроном и физик. Родился 30 апреля 1777 в Брауншвейге. Необыкновенные способности к математике и иностранным языкам проявились у Карла еще в детстве. Дед Гаусса был бедным крестьянином, отец садовником, каменщиком, смотрителем каналов в герцогстве Брауншвейг. Уже в двухлетнем возрасте мальчик показал себя вундеркиндом. В три года он умел читать и писать, даже исправлял счётные ошибки отца.
4 года. В колледже Гаусс изучил труды Ньютона, Эйлера, Лагранжа. Уже там он сделал несколько открытий в высшей арифметике, в том числе доказал закон взаимности квадратных вычетов. Лежандо, правда, открыл этот важнейший закон раньше, но строго доказать не сумел; Эйлеру это также не удалось. Кроме этого, Гаусс создал «метод наименьших квадратов» (тоже независимо открытый Лежандром) и начал исследования в области «нормального распределения ошибок». Сам того не подозревая, Гаусс переоткрыл формулу для определения суммы членов арифметической прогрессии. Талант юного математика не остался без внимания герцога Брауншвейгского, и в 1788 при его поддержке Гаусс поступил в закрытую школу Коллегиум Каролинум, а затем в Геттингенский университет, где обучался с 1795 по 1798.
5 Карл Гаусс В 1796 в возрасте 19 лет Гауссу удалось решить задачу, не поддававшуюся усилиям геометров со времен Евклида: он нашел способ, позволяющий построить с помощью циркуля и линейки правильный 17-угольник. На самого Гаусса этот результат произвел столь сильное впечатление, что он решил посвятить себя изучению математики, а не классических языков, как предполагал вначале. В 1799 он защитил докторскую диссертацию в университете Хельмштадта, в которой впервые дал строгое доказательство т.н. основной теоремы алгебры, а в 1801 опубликовал знаменитые Арифметические исследования (Disquisitiones arithmeticae), считающиеся началом современной теории чисел. Центральное место в книге занимает теория квадратичных форм, вычетов и сравнений второй степени, а высшим достижением является закон квадратичной взаимности - "золотая теорема", первое полное доказательство которой дал Гаусс.
6 Астрономия Следующий этап в жизни ученого связан с астрономией. 1 января 1801 астроном Дж.Пьяцци, составлявший звездный каталог, обнаружил неизвестную звезду 8-й величины. Ему удалось проследить ее путь только на протяжении дуги 9° (1/40 орбиты), и возникла задача определения полной эллиптической траектории тела по имеющимся данным, тем более интересная, что, по-видимому, на самом деле речь шла о давно предполагаемой между Марсом и Юпитером малой планете. В сентябре 1801 вычислением орбиты занялся Гаусс, в ноябре вычисления были закончены, в декабре опубликованы результаты, а в ночь с 31 декабря на 1 января известный немецкий астроном Ольберс, пользуясь данными Гаусса, нашел планету (ее назвали Церерой). В марте 1802 была открыта еще одна аналогичная планета - Паллада, и Гаусс тут же вычислил ее орбиту. Свои методы вычисления орбит он изложил в знаменитой Теории движения небесных тел (Theoria motus corporum coelestium, 1809). В книге описан использованный им метод наименьших квадратов, и по сей день остающийся одним из самых распространенных методов обработки экспериментальных данных.
7 Геодезия В 1807 Гаусс возглавил кафедру математики и астрономии в Геттингенском университете, а также получил должность директора Геттингенской астрономической обсерватории. В последующие годы он занимался вопросами теории гипергеометрических рядов (первое систематическое исследование сходимости рядов), механических квадратур, вековых возмущений планетных орбит, дифференциальной геометрией. В в центре научных интересов Гаусса находилась геодезия. Он проводил как практические работы (геодезическая съемка и составление детальной карты Ганноверского королевства, измерение дуги меридиана Геттинген - Альтона, предпринятое для определения истинного сжатия Земли), так и теоретические исследования. Им были заложены основы высшей геодезии и создана теория т.н. внутренней геометрии поверхностей. В 1828 вышел в свет основной геометрический мемуар Гаусса Общие исследования относительно кривых поверхностей (Disquisitiones generales circa superficies curvas). В нем, в частности, упоминается поверхность вращения постоянной отрицательной кривизны, внутренняя геометрия которой, как потом обнаружилось, является геометрией Лобачевского.
8 Физика Исследования в области физики, которыми Гаусс занимался с начала 1830-х годов, относятся к разным разделам этой науки. В 1832 он создал абсолютную систему мер, введя три основные единицы: 1 сек, 1 мм и 1 кг. В 1833 совместно с В.Вебером построил первый в Германии электромагнитный телеграф, связывавший обсерваторию и физический институт в Геттингене, выполнил большую экспериментальную работу по земному магнетизму, изобрел униполярный магнитометр, а затем бифилярный (также совместно с В.Вебером), создал основы теории потенциала, в частности сформулировал основную теорему электростатики (теорема Гаусса - Остроградского). В 1840 разработал теорию построения изображений в сложных оптических системах. В 1835 создал магнитную обсерваторию при Геттингенской астрономической обсерватории. В 1845 университет поручил Гауссу реорганизовать Фонд поддержки вдов и детей профессоров. Гаусс не только отлично справился с этой задачей, но и попутно внес важный вклад в теорию страхования. 16 июля 1849 Геттингенский университет торжественно отметил золотой юбилей диссертации Гаусса. В юбилейной лекции ученый вернулся к теме своей диссертации, предложив четвертое доказательство основной теоремы алгебры.
9 Метод Гаусса- метод последовательного исключения неизвестных. Рассмотрим...
12 Метод Гаусса-
13 Умер Карл Гаусс в Геттингене 23 февраля 1855.
Еще похожие презентации в нашем архиве:
© 2025 MyShared Inc.
All rights reserved.