Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемТимофей Рочегов
1 Первый признак подобия треугольников
2 Вспомним подобные треугольники : Определение: треугольники называются подобными, если углы одного треугольника равны углам другого треугольника и стороны одного треугольника пропорциональны сходственным сторонам другого. А1А1 В1В1 С1С1 А В С А 1 = А, В 1 = В, С 1 = С, А1В1А1В1 В1С1В1С1 А1С1А1С1 АВВС АС k. A 1 B 1 C 1 ABC, K – коэффициент подобия. ~ Сходственными сторонами в подобных треугольниках называются стороны, лежащие против равных углов.
3 Теорема. Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны. (по двум углам) Доказательство: Т. к. по условию А = М и В = Р, то С = К. По теореме об отношении площадей треугольников, имеющих равный угол, получаем: S АВС S МРК СА СВ КМ КР S АВС S МРК АВ АС МР МК S АВС S МРК ВА ВС РМ РК ;; Из этих равенств следует:АВ МР ВС РК АС МК Итак, углы одного треугольника равны углам другого треугольника, а их сходственные стороны пропорциональны, значит, по определению треугольники АВС и МРК подобны. Доказать: АВС МРК. ~ Дано: АВС и МРК, А = М, В = Р. A C B К Р М
4 Реши задачу 1. F R D N S T Являются ли треугольники подобными ?
5 Реши задачу С В А М Р К Являются ли треугольники подобными ?
6 Реши задачу Являются ли треугольники подобными ? С А Е М В 3.
7 Реши задачу 4.4. F N S R A Назови подобные треугольники и сходственные стороны в них: FN RS
8 Реши задачу 5. Назови подобные треугольники и сходственные стороны в них: C D H K Z HZ CK
9 Реши задачу 6.6. Назови подобные треугольники и сходственные стороны в них: F LN Q V FLNQ – трапеция.
10 Реши задачу 7.7. Е К 6 5 А В С 3 ?
11 x
12 Реши задачу 9.9. Н М О Р Х 12 4 ?
13 10. С А В О У ? 9 Реши задачу АО СО 3 2
14 Реши задачу 11. АВ СУ С В О У 10 2,5 1,4 ? А
15 Решение задачи Диагонали трапеции АВСК пересекаются в точке О. Площади треугольников ВОС и АОК относятся как 1: 9. Сумма оснований ВС и АК равна 4,8 см. Найдите основания трапеции. Дано: АВСК – трапеция, ВС + АК = 4,8 см, S СОВ : S АОК = 1 : 9. Найти: ВС, АК. Решение: АВСК – трапеция, значит, ВС АК, следовательно, САК = АСВ, как накрест лежащие (секущая – АС), аналогично АКВ = СВК. О А ВС К Значит, по двум углам треугольники СОВ и АОК подобны, следовательно, S СОВ : S АОК = k 2, а по условию S СОВ : S АОК = 1 : 9, т. е. k 2 = 1/9; k = 1/3. По доказанному треугольники СОВ и АОК подобны, следовательно, ВС : АК = k, т. е. ВС : АК = 1/3, значит, ВС = 1/3 АК или АК = 3 ВС. А по условию ВС + АК = 4,8 см, значит, ВС + 3 ВС = 4,8; 4 ВС = 4,8. Получаем: ВС = 1,2 см, АК = 4,8 – 1,2 = 3,6(см). Ответ: ВС = 1,2 см, АК = 3,6 см.
16 Нужный вывод О А В С К Дано: О, АВ СК. Доказать: ОААС ОВВК Доказательство: 1 3 М 2 Проведём АМ ОК, значит, 1 = О. Т. к. по условию АВ СК, то 2 = 3. Значит, АОВ и САМ подобны по двум углам, следовательно, ОААС ОВАМ сходственные стороны пропорциональны: ВАМК – параллелограмм, значит, АМ = ВК ОААС ОВВК Вывод: если стороны угла пересечены параллельными прямыми, то отрезки, образованные последовательно на одной стороне угла, пропорциональны отрезкам, образованным последовательно на другой стороне угла.
17 Реши задачу ? А В С М О Дано: АВ СМ.
18 Реши задачу А В С М О Дано: АВ СМ. ? 6 8 6
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.