Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемЕкатерина Скоморохова
1 Ковариация. Коэффициент корреляции. Корреляционный момент Работу выполнила: Студентка группы 2У00 Нагорнова Е.А.
2 Ковариация Ковариация (от англ. covariation - "совместная вариация") - мера линейной зависимости двух величин. Ковариация несет тот же смысл, что и коэффициент корреляции - она показывает, есть ли линейная взаимосвязь между двумя случайными величинами, и может рассматриваться как "двумерная дисперсия". Однако, в отличие от коэффициента корреляции, который меняется от -1 до 1, ковариация не инвариантна относительно масштаба, т.е. зависит единицы измерения и масштаба случайных величин.
5 Свойства Если X,Y независимые случайные величины, то:независимые cov(X,Y) = 0 Но обратное утверждение, вообще говоря, неверно: из отсутствия ковариации не следует независимость.
6 КОРРЕЛЯЦИОННЫЕ МОМЕНТЫ. КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ Корреляционные моменты, коэффициент корреляции - это числовые характеристики, тесно связанные во введенным выше понятием случайной величины, а точнее с системой случайных величин. Поэтому для введения и определения их значения и роли необходимо пояснить понятие системы случайных величин и некоторые свойства присущие им.
7 Коэффициент корреляции Пирсона Для определения корреляционной зависимости между двумя случайными величинами используют коэффициент корреляции Пирсона. Заметим, что понятие корреляции является одним из основных понятий теории вероятностей и математической статистики; оно было введено Гальтоном и Пирсоном.
8 Рассмотрим пример распределения оценок, для которого использование коэффициента Спирмена нецелесообразно. ученик ЕГЭ по физике ЕГЭ по математике
9 В указанной таблице имеет место «скачок» в оценках по физике, выраженный в сильном различии оценок первого и второго учеников. Разница между этими оценками существенна и порождает неравномерность распределения оценок. В подобных случаях рекомендуется применять выборочный коэффициент корреляции r Пирсона. Для его расчёта необходимо найти особую величину k(X,Y), называемую ковариацией.
11 Для малых выборок ковариацию удобно находить с помощью ковариационного графа, для построения которого необходимо вычислить выборочные средние для величин X, Y и относительные частоты. Ковариационный граф имеет вид:
12 Выборочный коэффициент корреляции определяется по формуле:
13 Ранговая корреляция Спирмена и выборочный коэффициент корреляции позволяют нам определить характер и силу связи для двух измеряемых величин. Но на практике педагогические и психологические эксперименты зачастую производят измерения большего количества величин. Например, тестирование учащихся может проводиться по таким параметрам, как трудолюбие, усидчивость, память, качество речи и т.д.
14 Спасибо за внимание
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.