Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 12 лет назад пользователемparnisha-com.ucoz.ru
1 Элективный курс по математике «Функция: просто, сложно, интересно» 9 класс Учитель: Н.Г. Чехова
2 Цель: создание условий для обоснованного выбора учащимися профиля обучения в старшей школе через оценку собственных возможностей в освоении математического материала на основе расширения представлений о свойствах функций Требования к усвоению курса: Учащиеся должны знать: понятие функции как математической модели, описывающей разнообразие реальных зависимостей; определение основных свойств функции (область определения, область значений, четность, возрастание, экстремумы и т.д.) Учащиеся должны уметь: правильно употреблять функциональную терминологию; исследовать функцию и строить её график; находить по графику функции её свойства.
3 ПОСТРОЕНИЕ ГРАФИКОВ ФУНКЦИЙ При изучении явлений окружающего мира и в практической деятельности нам приходится рассматривать величины различной природы: длину, площадь, объем, массу, температуру, время и другие. В зависимости от рассматриваемых условий одни из величин имеют постоянные числовые значения, у других эти значения переменные. Такие величины соответственно называются постоянными и переменными. Математика изучает зависимость между переменными в процессе их изменения. Например, при изменении радиуса круга меняется и его площадь, и мы рассматриваем вопрос об изменении площади круга в зависимости от изменения его радиуса. Математическим выражением взаимной связи реальных величин является идея функциональной зависимости. Понятие функции - важнейшее понятие математики.
4 ЭЛЕМЕНТАРНЫЕ ФУНКЦИИ. 1. ЛИНЕЙНАЯ ФУНКЦИЯ. Определение. Функция вида у=кх+в, где к и в некоторые числа, называется линейной функцией. а) Если к=0, тогда у=в. Графиком является прямая, параллельная оси ох и отстоящая от нее на в единиц вверх, если в>0 ( рис.1 ), и вниз, если в
5 в в х у х х у у х У=в У=0 Рис.1 Рис.2 Рис.3
6 б) Если в=0, то у=кх. Линейная функция вида у=кх называется прямой пропорциональностью. Она определена на множестве R. Функция является монотонно возрастающей, если к>0, и монотонно убывающей, если к 0 точки графика принадлежат 1 и 3 координатным четвертям(РИС.4). При к
7 У Х У Х Рис.4 Рис.5
8 в) Если к=0 и в=0, то у=кх+в. Функция определена на множестве всех действительных чисел. Функция имеет единственный нуль в точке х=-в/к. Функция является монотонно возрастающей при к>0 ( рис.6 ) и монотонно убывающей при к
9 х у х в к>0 к
10 у у хх Рис.10Рис ОБРАТНАЯ ПРОПОРЦИОНАЛЬНОСТЬ. Определение. Функция вида х=к/х, к=0, называется обратной пропорциональностью. Область определения этой функции совпадает с ее областью значений и представляет собой объединение двух промежутков: (-;0)U(0;). Если к>0, то функция монотонно убывает на всей области определения функции (рис.10). Если к
11 у х у х Рис.12 Рис КВАДРАТИЧНАЯ ФУНКЦИЯ. Функция вида у=ах² +вх+с, где а,в,с-некоторые числа, а=0, называется квадратичной. а) Функция вида у=ах² – простейшая квадратичная функция. Ее график называется параболой. Он проходит через начало координат, симметричен относительно оси ординат, ветви параболы направлены вверх, если а>0 (Рис.12) или вниз, если а
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.