Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемСергей Петрягин
1 Творческая работа ученика 9а класса Нефедова Владислава. Муниципальное учреждение «Средняя общеобразовательная школа 89» г. Северск Томской области.
2 1. Интересные факты из истории теоремы. 2. Некоторые формулировки теоремы. 3. Доказательство теоремы Пифагора. 4. Практическое применение теоремы
3 Исторический обзор начнем с древнего Китая. Здесь особое внимание привлекает математическая книга Тупей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: "Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4". В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.
4 Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам еще около 2300 г. до н.э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея). По мнению Кантора гарпедонапты, или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5.
5 Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом ко времени Хаммурапи, т. е. к 2000 г. до н. э., приводится приближенное вычисление гипотенузы прямоугольного треугольника. Геометрия у индусов, как и у египтян и вавилонян, была тесно связана с культом. Весьма вероятно, что теорема о квадрате гипотенузы была известна в Индии уже около 18 века до н. э.
6 У Евклида эта теорема гласит (дословный перевод): "В прямоугольном треугольнике квадрат стороны, натянутой над прямым углом, равен квадратам на сторонах, заключающих прямой угол".
7 В первом русском переводе евклидовых "Начал", сделанном Ф. И. Петрушевским, теорема Пифагора изложена так: "В прямоугольных треугольниках квадрат из стороны, противолежащей прямому углу, равен сумме квадратов из сторон, содержащих прямой угол".
8 Квадрат гипотенузы равен сумме квадратов катетов Квадрат гипотенузы равен сумме квадратов катетов
10 b c a 2. По определению косинуса: 1. Построим высоту из прямого угла С. ДОКАЗАТЕЛЬСТВО Дан прямоугольный треугольник АВС Дан прямоугольный треугольник АВС
11 Складывая полученные равенства и замечая, что AD+DB=AB, получим: Теорема доказана!!! Аналогично:
12 Рассмотрим примеры практического применения теоремы Пифагора. Не будем пытаться привести все примеры использования теоремы - это вряд ли было бы возможно. Область применения теоремы достаточно обширна и вообще не может быть указана с достаточной полнотой. Определим возможности, которые дает теорема Пифагора для вычисления длин отрезков некоторых фигур на плоскости.
13 Диагональ d квадрата со стороной а можно рассматривать как гипотенузу прямоугольного равнобедренного треугольника с катетом а. Таким образом: d²=2a².
14 Диагональ d прямоугольника со сторонами а и b вычисляется подобно тому, как вычисляется гипотенуза прямоугольного треугольника с катетами a и b. Мы имеем d²=a²+b²
15 Высота h равностороннего треугольника со стороной а может рассматриваться как катет прямоугольного треугольника, гипотенуза которого а, а другой катет a/2. Таким образом имеем a² =h ² +( a² /4), или h ² =(3/4) a².
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.