Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемТамара Окладникова
1 Пирамида, вписанная в конус Пирамида называется вписанной в конус, если ее основание вписано в основание конуса, а вершина совпадает с вершиной конуса. При этом конус называется описанным около пирамиды. Около пирамиды можно описать конус тогда и только тогда, когда около ее основания можно описать окружность.
2 Упражнение 1 Найдите сторону основания правильной треугольной пирамиды, вписанной в конус, радиус основания которого равен 1. Ответ:
3 Упражнение 2 Найдите сторону основания правильной четырехугольной пирамиды, вписанной в конус, радиус основания которого равен 1. Ответ:
4 Упражнение 3 Найдите сторону основания правильной шестиугольной пирамиды, вписанной в конус, радиус основания которого равен 1. Ответ: 1.
5 Пирамида, описанная около конуса Пирамида называется описанной около конуса, если ее основание описано около основания конуса, а вершина совпадает с вершиной конуса. При этом конус называется вписанным в пирамиду. В пирамиду можно вписать конус тогда и только тогда, когда в ее основание можно вписать окружность.
6 Упражнение 1 Найдите сторону основания правильной треугольной пирамиды, описанной около конуса, радиус основания которого равен 1. Ответ:
7 Упражнение 2 Найдите сторону основания правильной четырехугольной пирамиды, описанной около конуса, радиус основания которого равен 1. Ответ: 2.
8 Упражнение 3 Найдите сторону основания правильной шестиугольной пирамиды, описанной около конуса, радиус основания которого равен 1. Ответ:
9 Сфера, вписанная в конус Сфера называется вписанной в конус, если она касается его основания и боковой поверхности (касается каждой образующей). При этом конус называется описанным около сферы. В любой конус (прямой, круговой) можно вписать сферу. Ее центр находится на высоте конуса, а радиус равен радиусу окружности, вписанной в треугольник, являющийся осевым сечением конуса. Напомним, что радиус r окружности, вписанный в треугольник, находится по формуле где S – площадь, p – полупериметр треугольника.
10 Упражнение 1 В конус, радиус основания которого равен 1, а образующая равна 2, вписана сфера. Найдите ее радиус. Решение. Треугольник SAB равносторонний. Высота SH равна Площадь S равна Полупериметр p равен 3. По формуле r = S/p получаем
11 Упражнение 2 В конус, радиус основания которого равен 2, вписана сфера радиуса 1. Найдите высоту конуса. Решение. Обозначим h высоту SH конуса. Из формулы r = S/p имеем: где r = 1, a = FG = 4, p = Решая уравнение находим
12 Упражнение 3 Радиус основания конуса равен 1. Образующая наклонена к плоскости основания под углом 45 о. Найдите радиус вписанной сферы. Ответ: Решение. Высота SH конуса равна 1. Образующая. Полупериметр p равен По формуле r = S/p, имеем
13 Упражнение 4 Высота конуса равна 8, образующая 10. Найдите радиус вписанной сферы. Ответ: r = 3.Решение. Радиус основания конуса равен 6. Площадь треугольника SFG равна 48, полупериметр 16. По формуле r = S/p имеем r = 3.
14 Упражнение 5 Можно ли вписать сферу в наклонный конус? Ответ: Нет.
15 Сфера, вписанная в усеченный конус Сфера называется вписанной в усеченный конус, если она касается его оснований и боковой поверхности (касается каждой образующей). При этом усеченный конус называется описанным около сферы. В усеченный конус можно вписать сферу, если в его осевое сечение можно вписать окружность. Радиус этой окружности будет равен радиусу вписанной сферы.
16 Упражнение 1 В усеченный конус, радиусы оснований которого равны 2 и 1, вписана сфера. Найдите радиус сферы и высоту усеченного конуса. Решение. Имеем: A 1 B = A 1 O 1 = 2, A 2 B = A 2 O 2 = 1. Следовательно, A 1 A 2 = 3, A 1 C = 1. Таким образом,
17 Упражнение 2 В усеченный конус, радиус одного основания которого равен 2, вписана сфера радиуса 1. Найдите радиус второго основания. Решение. Пусть A 1 O 1 = 2. Обозначим r = A 2 O 2. Имеем: A 1 A 2 = 2+r, A 1 C = 2 – r. По теореме Пифагора, имеет место равенство из которого следует, что выполняется равенство Решая полученное уравнение относительно r, находим
18 Упражнение 3 В усеченном конусе радиус большего основания равен 2, образующая наклонена к плоскости основания под углом 60 о. Найдите радиус вписанной сферы. Решение. Заметим, что осевым сечением конуса, из которого получен усеченный конус, является равносторонний треугольник со стороной 2. Радиус r сферы, вписанной в усеченный конус, равен радиусу окружности, вписанной в этот равносторонний треугольник, т.е.
19 Упражнение 4 Образующая усеченного конуса равна 2, площадь осевого сечения 3. Найдите радиус вписанной сферы. Ответ: Решение. Воспользуемся формулой r = S/p, где S – площадь осевого сечения, p – полупериметр. В нашем случае S = 3. Для нахождения полупериметра напомним, что для четырехугольника, описанного около окружности, суммы противоположных сторон равны. Значит, полупериметр равен удвоенной образующей цилиндра, т.е. p = 4. Следовательно, r = ¾.
20 Упражнение 5 Можно ли вписать сферу в усеченный наклонный конус. Ответ: Нет.
21 Сфера, описанная около конуса Сфера называется описанной около конуса, если вершина и окружность основания конуса лежат на сфере. При этом конус называется вписанным в сферу. Около любого конуса (прямого, кругового) можно описать сферу. Ее центр находится на высоте конуса, а радиус равен радиусу окружности, описанной около треугольника, являющимся осевым сечением конуса. Напомним, что радиус R окружности, описанной около треугольника, находится по формуле где S – площадь, a, b, c – стороны треугольника.
22 Упражнение 1 Около конуса, радиус основания которого равен 1, а образующая равна 2, описана сфера. Найдите ее радиус. Решение. Треугольник SAB равносторонний со стороной 2. Высота SH равна Площадь S равна По формуле R = abc/4S получаем
23 Упражнение 2 Около конуса, радиус основания которого равен 4, описана сфера радиуса 5. Найдите высоту h конуса. Решение. Имеем, OB = 5, HB = 4. Следовательно, OH = 3. Учитывая, что SO = OB = 5, получаем h = 8. Ответ: h = 8.
24 Упражнение 3 Радиус основания конуса равен 1. Образующая наклонена к плоскости основания под углом 45 о. Найдите радиус описанной сферы. Ответ: R = 1. Решение. Треугольник SAB – прямоугольный, равнобедренный. Следовательно, радиус R описанной сферы равен радиусу основания цилиндра, т.е. R = 1.
25 Упражнение 4 Высота конуса равна 8, образующая 10. Найдите радиус описанной сферы. Решение. В треугольнике SAB имеем: SA = SB = 10, SH = 8. По теореме Пифагора, AH = 6 и, следовательно, S = 48. Используя формулу R = abc/4S, получаем
26 Упражнение 5 Можно ли описать сферу около наклонного конуса? Ответ: Да.
27 Сфера, описанная около усеченного конуса Сфера называется описанной около усеченного конуса, если окружности оснований усеченного конуса лежат на сфере. При этом усеченный конус называется вписанным в сферу. Около усеченного конуса можно описать сферу, если около его осевого сечения можно описать окружность. Радиус этой окружности будет равен радиусу описанной сферы.
28 Упражнение 1 Около усеченного конуса, радиусы оснований которого равны 2 и 1, а образующая равна 2, описана сфера. Найдите ее радиус. Решение. Заметим, что A 1 O 1 B 2 O 2 и O 1 B 1 B 2 A 2 – ромбы. Треугольники A 1 O 1 A 2, O 1 A 2 B 2, O 1 B 1 B 2 – равносторонние и, значит, A 1 B 1 – диаметр. Следовательно, R =2. Ответ: R = 2,
29 Упражнение 2 Радиус меньшего основания усеченного конуса равен 1, образующая равна 2 и составляет угол 45 о с плоскостью другого основания. Найдите радиус описанной сферы. Решение. Имеем A 2 O 2 = 1, A 1 A 2 = 2, O 1 O 2 =, OO 1 = O 1 C = 1. Следовательно, OO 2 = 1 + и, значит,
30 Упражнение 3 Радиус одного основания усеченного конуса равен 4, высота 7, радиус описанной сферы 5. Найдите радиус второго основания усеченного конуса. Решение. Имеем OO 1 = 3, OO 2 = 4 и, следовательно, O 2 A 2 = 3. Ответ: 3.
31 Упражнение 4 Найдите радиус сферы, описанной около усеченного конуса, радиусы оснований которого равны 2 и 4, а высота равна 5. Учитывая, что O 1 O 2 = 6, имеем равенство Решая его относительно R, находим Решение. Обозначим R радиус описанной сферы. Тогда
32 Упражнение 5 Можно ли описать сферу около усеченного наклонного конуса. Ответ: Нет.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.