Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемЭдуард Подомарев
2 Оглавление Факториал Комбинация Множество Теория Вероятности Теория Вероятности Комбинаторика Г. Лейбниц Н. Чарталье Галилео Галилей Б.Пискамо П. Ферма Дж. Кардано
3 Факториа́л числа n (обозначается n!, произносится эн факториа́л) произведение всех натуральных чисел до n включительно: По определению полагают 0! = 1. Факториал определён только для целых неотрицательных чисел. Эта функция часто используется в комбинаторике, теории чисел и функциональном анализе. Иногда словом «факториал» неформально называют восклицательный знак.
4 Комбинато́рика (Комбинаторный анализ) раздел математики, изучающий дискретные объекты, множества (сочетания, перестановки, размещения и перечисление элементов) и отношения на них (например, частичного порядка). Комбинаторика связана со многими другими областями математики алгеброй, геометрией, теорией вероятности, и имеет широкий спектр применения, например в информатике и статистической физике. Термин «комбинаторика» был введён в математический обиход Лейбницем, который в 1666 году опубликовал свой труд «Рассуждения о комбинаторном искусстве». Иногда под комбинаторикой понимают более обширный раздел дискретной математики, включающий, в частности, теорию графов.
5 1. Сочетание, взаимное расположение чего- нибудь. 2. Сложный замысел, система приемов для достижения чего-нибудь.
6 Мно́жество один из ключевых объектов математики, в частности, теории множеств. «Под множеством мы понимаем объединение в одно целое определенных, вполне различимых объектов нашей интуиции или нашей мысли» (Г. Кантор). Это не является в полном смысле логическим определением понятия множество, а всего лишь пояснением (ибо определить понятие значит найти такое родовое понятие, в которое данное понятие входит в качестве вида, но множество это, пожалуй, самое широкое понятие математики и логики).
7 Тео́рия вероя́тностей раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними. Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр (орлянка, кости, рулетка). Первоначально её основные понятия не имели строго математического вида, к ним можно было относиться как к некоторым эмпирическим фактам, как к свойствам реальных событий, и они формулировались в наглядных представлениях. Важный вклад в теорию вероятностей внёс Яков Бернулли: он дал доказательство закона больших чисел в простейшем случае независимых испытаний. В первой половине XIX века теория вероятностей начинает применяться к анализу ошибок наблюдений; Лаплас и Пуассон доказали первые предельные теоремы. Во второй половине XIX века основной вклад внесли русские учёные П. Л. Чебышёв, А. А. Марков и А. М. Ляпунов. В это время были доказаны закон больших чисел, центральная предельная теорема, а также разработана теория цепей Маркова. Современный вид теория вероятностей получила благодаря аксиоматизации, предложенной Андреем Николаевичем Колмогоровым. В результате теория вероятностей приобрела строгий математический вид и окончательно стала восприниматься как один из разделов математики.
8 Готфрид Вильгельм фон Лейбниц Дата и место рождения:1 июля, 1646 (Лейпциг, Германия) Дата и место смерти:14 ноября, 1716 (Ганновер, Германия) Школа/традиция:рационализм Период:Философия XVII век, (Философия Нового времени) Направление:Европейская философия Основные интересы:Метафизика, эпистемология, наука, математика, теодицея Значительные идеи:Математический анализ, врождённые идеи, оптимизм, монада Оказавшие влияние:Платон, Аристотель, Схоластика, Декарт, Христиан Гюйгенс Последователи:Математики последующих эпох, Христиан Вольф, Кант, Бертран Рассел, Герман Гессе
10 Галилео Галилей (итал. Galileo Galilei; 15 февраля 1564, Пиза 8 января 1642, Арчетри, близ Флоренции) итальянский философ, математик, физик, механик и астроном, оказавший значительное влияние на науку своего времени. Галилей первым использовал телескоп для наблюдения планет и других небесных тел, и сделал ряд выдающихся астрономических открытий. Галилей основатель экспериментальной физики. Своими экспериментами он убедительно опроверг умозрительную метафизику Аристотеля и заложил фундамент классической динамики. При жизни был известен как активный сторонник гелиоцентрической системы мира, что привело Галилея к серьёзному конфликту с католической церковью.
12 Пьер де Ферма́ (фр. Pierre de Fermat, ) французский математик, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. По профессии юрист, с 1631 года советник парламента в Тулузе. Блестящий полиглот. Наиболее известен формулировкой Великой теоремы Ферма. Ферма практически по современным правилам находил касательные к алгебраическим кривым. Именно эти работы подтолкнули Ньютона к созданию анализа. Ферма сформулировал общий закон дифференцирования дробных степеней и распространил формулу интегрирования степени на случаи дробных и отрицательных показателей. Развив идею Декарта, Ферма применил аналитическую геометрию к пространству. В работе «Введение к теории плоских и пространственных мест», ставшей известной в 1636 году, Ферма показал, что прямым соответствуют уравнения 1-й степени, а коническим сечениям уравнения 2-й степени. Ферма исследовал общие виды уравнений 1-й и 2-й степеней.
13 Джероламо (Джироламо, Иероним) Кардано (лат. Hieronymus Cardanus, итал. Girolamo Cardano, Gerolamo Cardano; 24 сентября 1501, Павия 21 сентября 1576, Рим) итальянский математик, инженер, философ, медик и астролог, изобретатель карданного вала. Побочный сын адвоката Фачио (Facio) Кардано. Кардано внёс значительный вклад в развитие алгебры: его имя носит формула Кардано для нахождения корней кубического неполного уравнения вида x3 + ax + b = 0. Он же первым в Европе стал использовать отрицательные корни уравнений. В действительности Кардано не открывал этот алгоритм и даже не пытался приписать его себе. В своём трактате «Высокое искусство» («Ars magna») он признаётся, что узнал формулу от Никколо Тартальи, пообещав сохранить его в тайне, однако обещание не сдержал и спустя 6 лет (1545) опубликовал упомянутый трактат. Из него учёный мир и узнал о замечательном открытии. Кардано также включил в свою книгу ещё одно открытие, сделанное его учеником Лодовико (Луиджи) Феррари: общее решение уравнения четвёртой степени.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.