Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемВероника Часоводова
1 Решение задач по теме: «Перпендикулярность» Урок-практикум
2 План урока Немного теории Полезные упражнения Составление плана решения задач Решение задач по готовым чертежам Тест «Перпендикулярность» Итог урока Домашнее задание
3 Немного теории Дайте понятие угла между двумя плоскостями. Сформулируйте определение перпендикулярности двух плоскостей. Сформулируйте признак перпендикулярности двух плоскостей. Какая фигура называется двугранным углом? Линейным углом двугранного угла? Каково взаимное расположение граней двугранного угла и плоскости двугранного угла? Какой угол образует ребро двугранного угла с любой прямой, лежащей в плоскости его линейного угла? Можно ли утверждать, что две плоскости перпендикулярные третьей параллельны? Верно- ли, что прямая и плоскость перпендикулярные другой плоскости, параллельны между собой? Где лежит высота тупоугольного треугольника, проведенная из вершины острого угла? В какую трапецию можно вписать окружность? Свойство касательной и радиуса, проведенного в точку касания. Свойство высоты прямоугольного треугольника, проведенной к гипотенузе.
4 Полезные упражнения
5 Задача 1 Дано: ABCD – Квадрат MB(ABC) Найдите: (AMD)^(ABC) AD C M B
6 Задача 2 Дано: ABCD – параллелограмм BAD – острый, MB(ABC) Найти: (AMD)^(ABC) AD C M B
7 Задача 3 Дано: DCBE – параллелограмм AD(DCE), BCD – тупой (ABC)^(BCD) = ACD ? C A D E B
8 Задача 4 Дано: ABC, ^(ABC) = 30 o AD – высота, AD = a. Найдите: (А, ) А B D C a
9 Задача 5 Дано: ABC, C=90 o ^ (ABC)=30 o BC = AC = a Найдите: (А, ) BC A a a
10 Задача 6 Дано: ABC, C=150 o ^ (ABC)=30 o АС=6 Найдите: (А, ) B C A 6
11 Задача 7 Верно ли, что: 1.(SAB)^(DBC)=90 o 2.(SBC)(SAB) 3.(SAC)(DBC) 4.(SCD)^(DBC)=90 o 5.(DBC)(ASP) 6.(SBC)^(ASP)=90 o BC D S A P
12 Составление плана решения задач
13 Задача 1 Найдите: 1.Расстояние от точки C до (AHD) 2.(BAD)^(AHD) 3.AC^(AHD) AD C B H a b 30 o
14 Задача 2 Найдите: 1.S ADB 2.(ADB)^(ABC) A B D h a C b
15 Решение задач по готовым чертежам
16 Задача 1 Дано: ABCD – трапеция, AB=CD О - центр вписанной окружности ОЕ(ABC), М -точка касания окружности с боковой стороной. ME=5, OE=3, ABC=150 o Найдите: P ABCD A D M O B C E 150 o
17 Задача 2 Дано: ABC, АCВ=90 o, AC=6 CB=8, O- центр вписанной окружности DO(ABC), DO= Найдите: S ADC C BA D M O 8 6
18 Задача 3 Дано: ABC, АCВ=90 o, AB CD, AC=4, BC=3, CF AB CFD=30 o Найдите: CD F A B D C o
19 Тест «Перпендикулярность»
20 В-1 1.Какое из следующих утверждений верно? А: двугранным углом называется фигура, образованная прямой а и двумя полуплоскостями с общей границей а; В: двугранный угол имеет бесконечное множество различных линейных углов; С: градусной мерой двугранного угла называется градусная мера его линейного угла; D: угол между пересекающимися плоскостями может быть тупым; 2. При пересечении двух плоскостей образовались двугранные углы, один из которых в два раза больше другого. Найдите градусную меру угла между плоскостями. А: 30 0 ; В: 60 0 ; С:90 0 ; D:
21 3. DАВС – правильная треугольная пирамида. DО – высота пирамиды, а точка Е – середина стороны ВС. Линейным углом двугранного угла DВСО является А: DЕО; В: DВО; С: DЕВ; D: угол не обозначен. 4. АВСDА 1 В 1 С 1 D 1 - прямоугольный параллелепипед, О – точка пересечения диагоналей грани АВСD. Расстояние от точки С 1 до диагонали ВD равно А: С 1 С; В: С 1 О; С: С 1 В; D:С 1 D. 5. Гипотенуза прямоугольного равнобедренного треугольника лежит в плоскости, а катет наклонен к этой плоскости под углом найдите угол между плоскостью и плоскостью треугольника. А: 90 0 ; В: 60 0 ; С:45 0 ; D: 30 0.
22 В-2 1.Какое из следующих утверждений верно? А: градусная мера двугранного угла не превосходит 90 0 ; В: двугранным углом называется угол, образованный прямой а и двумя полуплоскостями с общей границей а; С: если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны; D: угол между плоскостями тупой. 2. При пересечении двух плоскостей образовались двугранные углы, градусная мера одного из которых на 30 0 больше градусной меры другого. Найдите градусную меру угла между этими плоскостями. А: ; В: 90 0 ; С:75 0 ; D: 60 0
23 3. DАВС – треугольная пирамида. DВ – высота пирамиды, а точка Е – середина стороны АС. Линейным углом двугранного угла АВDС является А: DВА; В: DВЕ; С: АВС; D: угол не обозначен. 4. АВСDА 1 В 1 С 1 D 1 - прямоугольная призма, Точка О 1 и О – пересечения диагоналей оснований АВСD и А 1 В 1 С 1 D. Расстояние от точки С 1 до диагонали АС равно А: С 1 С; В: С 1 А; С: С 1 О; D:С 1 О. 5. Гипотенуза прямоугольного равнобедренного треугольника лежит в плоскости угол между плоскостью и плоскостью треугольника равен Найдите градусную меру угла, под которым катет наклонен к плоскости. А: 90 0 ; В: 60 0 ; С:45 0 ; D: 30 0
24 Ключ к тесту: задание Вариант 1 CBABC Вариант 2 CCCAD
25 Итоги урока
26 Оценки за урок: Абрамян С. Брыксин М. Волков В. Григоров А. Зимаев Д. Казьмин Д. Копылов А. Ладыгин П. Лукьянов М. Михалев И. Неволин Н. Поздняков Ю. Проскуряков А. Сидоров А. Смирнов М. Сорокин О. Тихонов П. Федоров А. Хвостов А. Чевко А.
27 Домашнее задание В равнобедренном треугольнике основание и высота равны по 4. Данная точка находится на расстоянии 6 от плоскости треугольника и на равном расстоянии от его вершин. Найдите это расстояние. Катеты прямоугольного треугольника АВС равны 3 и 4. Из вершины прямого угла С проведен к плоскости этого треугольника перпендикуляр CD = 1. Найдите расстояние от точки D до гипотенузы АВ. Стороны треугольника относятся как 10 : 17 : 21, а его площадь равна 84. Из вершины большего угла этого треугольника проведен перпендикуляр к его плоскости, равный 15. Найдите расстояние от его концов до большей стороны. В треугольнике АВС угол С прямой; CD – перпендикуляр к плоскости этого треугольника. Точка D соединена с А и В. Найдите площадь треугольника ADB, если : СА = 3, ВС = 2 и CD = 1.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.