Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемЕгор Шмыгин
1 Тема: Решение треугольника теорема косинусов. 3 где R – радиус описанной окружности.,где P – периметр, r – радиус вписанной окружности. Площадь треугольника , где (если треугольник правильный).
2 Свойства медиан. О – точка пересечения медиан. Тогда: медиана к стороне В любом треугольнике медиана делит его на два равновеликих треугольника т.е треугольники площади которых равны.
3 Биссектрисы треугольника. 1.Точка пересечения биссектрис треугольника является центром вписанной окружности. 2.Биссектриса треугольника делит сторону на части, пропорциональные двум другим соответственным сторонам. Если CK - биссектриса, то
4 Подобные треугольники. 1.Прямая параллельная стороне треугольника, отсекает от него треугольник, подобный данному. 2.Сходственные стороны лежат против равных углов подобных треугольников. 3.Если AD биссектриса, т.е., то
5 Задача 1. Основание равнобедренного треугольникаравно30 см, а высота, проведённая из вершины основания 24 см. Найти S треугольника. Решение: прямоугольный, т.к. BK – высота и медиана равнобедренного треугольника, то 3. как прямоугольные с общим острым углом Тогда: 4. Ответ.
6 Задача 2. В проведена медиана AM Найти если Решение: По теореме косинусов: посторонний корень, т.е. не удовлетворяет смыслу задачи. AM=7, Тогда Ответ. 21
7 Задача 3. Найти площадь треугольника, если, а медиана Решение: BM – медиана, значит AM=MC=10. Медиана делит на два равнобедренных треугольника Значит Тогда Ответ. 96
8 Задача 4. Длина основания AC треугольника ABC равна 6, медиана AM=5. Высота BE делит медиану AM пополам. Найти AM – медиана, следовательно, значит - прямоугольный и следовательно, так как M – середина BC, то по теореме Фалеса H – середина EC значит (по свойству средней линии). Так как AO=OM – по условию, AE=EH. Значит, AH=4, AM=5, Ответ. 18
9 Решить самостоятельно: 1.В треугольнике ABC проведена медиана AM. Найти: если Ответ В треугольнике ABC проведена биссектриса BK, длина которой равна 4, причём Найти Ответ. 4 3.В равнобедренном треугольнике ABC (AB=BC) проведена биссектриса AD. Найти AC. Ответ. AC=4. 4.Точка M лежит на стороне AO треугольника AOM, Найти. Ответ. 8 5.В треугольнике ABC AB=BC=15, CA=24. Найти расстояние между точкой пересечения серединных перпендикуляров и точкой пересечения медиан треугольника. Ответ. 44
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.