Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемВалентина Петросова
1 Применение теоремы Пифагора и пифагоровых троек для решения геометрических задач. Автор: Линдфуйт Наталья, ученица 9 класса Руководитель: Лонская Татьяна Александровна, учитель математики
3 Объект исследования: Теорема Пифагора и пифагоровы тройки. Предмет исследования: Применение пифагоровых троек для быстрого решения геометрических задач.
4 Цель: Собрать сведения о пифагоровых тройках и их применения для решения практических задач курса геометрии и задач ЕГЭ типа В 4.. Гипотеза: Мы сможем найти способы быстрого решения геометрических задач и заданий ЕГЭ типа В 4, если будем знать приемы формирования пифагоровых триад и применять таблицы пифагоровых троек.
5 Задачи: 1. Показать уникальность открытия Пифагора и дать определение понятия пифагоровых троек. 2. Описать простые способы формирования пифагоровых троек. 3. Проанализировать возможности применения теоремы Пифагора, применения полученных знаний о пифагоровых тройках для их практического применения при решении задач.
6 Методы исследования: методы теоретического исследования (анализ литературы, поиск источников); анализ ряда задач учебника геометрии 7-9 класса; методы эмпирического исследования (изучение опыта решения геометрических задач, нахождение рациональных способов).
7 Практическая значимость исследования определяется: проведением исследования по проблеме формирования пифагоровых троек (описание простых способов) описанием опыта применения знаний о пифагоровых тройках; разработкой рекомендаций ученикам 8-11 класса при решении задач, материалы исследования могут быть использованы учениками и учителями при преподавании курса геометрии.
8 Глава 1. Теорема Пифагора и пифагоровы тройки 1.1 Биография Пифагора Пифагор Самосский древнегреческий философ и математик, создатель религиозно- философской школы пифагорейцев
9 1.3 Пифагоровы тройки и способы их формирования Пифагоровы тройки – это тройки (x, y, z) натуральных чисел x, y, z, для которых выполняется равенство
10 Способ 1. Обычно пользуются таким приемом подбора решений: произвольные взаимно простые числа m и n, (m,n)=1, m >n одно из них четное, а другое нечетное, и формируют триаду (m²- n²; 2mn; m²+ n²) (1)
11 Триаду (a, b, c) принято называть примитивной (основной), если a и b – взаимно простые числа, т. е. (a, b) = 1 формула (m²- n²; 2mn; m²+ n²) дает все возможные примитивные триады.
12 2. Следующий приём возник из наблюдений над некоторыми свойствами триад. а) Пусть первое число триады (длина одного катета) – нечетное, тогда, например, для триады (3; 4; 5) наблюдаем: 3² =4+5, (5; 12; 13) наблюдаем: 5² =12+13, (7; 24; 25) - 7² =24+25 и т. д.
13 Эти наблюдения показывают приём подбора: взять нечетное число, возвести его в квадрат и результат представить в виде суммы двух последовательных чисел; слагаемые будут вторым и третьим членами триады. Пример: триада (13;84;85), 13² = действительно 13² + 84² = 85².
14 б) пусть первое число триады – четное. Тогда, например, для триады (3; 4; 5) наблюдаем: 4=2(3+5), для триады (8;15; 17) 8=2(15+17) и т. д. Наблюдения показывают прием подбора: Взять число, кратное 4, его квадрат разделить на 2 и результат представить как сумму двух последовательных нечетных чисел; слагаемые будут вторым и третьим членами триады. Пример: ( 16; 63; 65) 16 ² =2(63+65)
15 Свойства пифагоровых троек Свойство 1. Числа, входящие в простейшую пифагорову тройку, попарно взаимно просты. Действительно, если два из них, например x и y имеют простой общий делитель p, то из равенства (1) следует, что на p делится и третье число z. Это противоречит тому, что тройка – простейшая. Следствие. В простейшей пифагоровой тройке только одно число может быть чётным. Свойство 2. В простейшей пифагоровой тройке числа x и y не могут быть одновременно нечётными.
16 Свойство 3. Из данного пифагорова треугольника со сторонами (а, b, с) можно получить бесконечное множество подобных ему треугольников со сторонами (kа, kb, kс), где k – произвольное натуральное число.
17 Таблица 1. Примитивные пифагоровы тройки для m10 m nabcmnabc
18 Рассмотрим решение заданий, содержащихся в открытом банке заданий (адрес сайта ).
19 Задание B4 ЕГЭ В С А
20 В этом задании сразу угадывается тройка (6, 8, 10). Остается только по рисунку определить отношение противолежащего катета углу А к прилежащему. tgA= 6/10= 0,6
21 Решение: Быстрый способ решения основан на понимании того факта, что синус угла это есть отношение сторон треугольника и следовательно стороны его можно задать как АВ = 8х, ВС (противолежащий катет) = 7х, АС = 15. По теореме Пифагора, решая уравнение найдем х = 1 и тогда гипотенуза АВ = 8.
22 При решении заданий обращаем внимание, на то что подсказкой для использования той или иной «тройки» является значение синуса, косину и тангенса, обязательно необходим чертеж для решения заданий.
23 Заключение Пифагоровы тройки находят прямое применение в проектировании множества вещей, окружающих нас в повседневной жизни. А умы учёных продолжают искать новые варианты доказательств теоремы Пифагора.
24 Спасибо за внимание
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.