Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемschool15.tgl.ru
1 Каковы примерно размеры атома?
2 Какую модель атома предложил Томсон?
3 Чем исследовал атом Резерфорд?
4 Каковы результаты опыта Резерфорда?
5 Чем можно было объяснить такие результаты?
6 Методы наблюдения и регистрации элементарных частиц
7 Счётчик Гейгера Камера Вильсона Пузырьковая камера Фотографические эмульсии Сцинтилляционный метод Методы наблюдения и регистрации элементарных частиц Искровая камера
8 Сцинтилляционный счётчик, прибор для регистрации ядерных излучений и элементарных частиц (протонов, нейтронов, электронов, y - квантов, мезонов и т. д.). Основным элементом счетчика является вещество, люминесцирующее под действием заряженных частиц (сцинтиллятор). При попадании заряженной частицы на полупрозрачный экран, покрытый сульфидом цинка, возникает вспышка света (СЦИНТИЛЛЯЦИЯ). Вспышку можно наблюдать и фиксировать. Прибор состоит из сцинтиллятора, фотоэлектронного умножителя и электронной системы.
9 Счетчик Гейгера. Схема Фотография Ханс Гейгер В газоразрядном счетчике имеются катод в виде цилиндра и анод в виде тонкой проволоки по оси цилиндра. Пространство между катодом и анодом заполняется специальной смесью газов. Между катодом и анодом прикладывается напряжение. U
10 + - R К усилителю Стеклянная трубка Анод Катод Счётчик Гейгера применяется в основном для регистрации электронов и y - квантов(фотонов большой энергии). Счётчик регистрирует почти все падающие в него электроны. Регистрация сложных частиц затруднена. Счетчик Гейгера. Чтобы зарегистрировать y- кванты, стенки трубки покрывают специальным материалом, из которого они выбивают электроны.
11 Камеру Вильсона можно назватьокном в микромир. Она представляет собой герметично закрытый сосуд, заполненный парами воды или спирта, близкими к насыщению. Стеклянная пластина поршень вентиль Вильсон - английский физик, член Лондонского королевского общества. Изобрёл в 1912 г прибор для наблюдения и фотографирования следов заряжённых частиц, впоследствии названную камерой Вильсона ( Нобелевская премия, 1927). Камера Вильсона Советские физики П.Л. Капица и Д.В. Скобельцин предложили помещать камеру Вильсона в однородное магнитное поле.
12 Если частицы проникают в камеру, то на их пути возникают капельки воды. Эти капельки образуют видимый след пролетевшей частицы - трек. По длине трека можно определить энергию частицы, а по числу капелек на единицу длины оценивается её скорость. Трек имеет кривизну. Первое искусственное превращение элементов – взаимодействие частицы с ядром азота, в результате которого образовались ядро кислорода и протон.
13 При понижении давления жидкость в камере переходит в перегретое состояние. поршень Пузырьковая камера Пролёт частицы вызывает образование цепочки капель, которые можно сфотографировать. Фотография столкновения элементарных частиц в главной пузырьковой камере ускорителя Европейского центра ядерных исследований (ЦЕРН) в Женеве, Швейцария. Траектории движения элементарных частиц расцвечены для большей ясности картины. Голубыми линиями отмечены следы пузырьков, образующихся вокруг атомов, возбужденных в результате пролета быстрых заряженных частиц Д.Глейзер. Вскипание перегретой жидкости.
14 Заряжённые частицы создают скрытые изображения следа движения. По длине и толщине трека можно оценить энергию и массу частицы. Фотоэмульсия имеет большую плотность, поэтому треки получаются короткими. Фотографические эмульсии Метод толстослойных фотоэмульсий. 20-е г.г. Л.В.Мысовский, А.П.Жданов. Треки элементарных частиц в толстослойной фотоэмульсии Наиболее дешевым методом регистрации ионизирующего излучения является фотоэмульсионный (или метод толстослойных эмульсий). Он базируется на том, что заряженная частица, двигаясь в фотоэмульсии, разрушает молекулы бромида серебра в зернах, сквозь которые прошла. После проявления такой пластинки в ней возникают «дорожки» из осевшего серебра, хорошо видимые в микроскоп. Каждая такая дорожка это след движущейся частицы. По характеру видимого следа (его длине, толщине и т. п.) можно судить как о свойствах частицы, которая оставила след (ее энергии, скорости, массе, направлении движения), так и о характере процесса (рассеивание, ядерная реакция, распад частиц), если он произошел в эмульсии.
15 На рисунке изображены следы в фотоэмульсии. Этот метод имеет такие преимущества: 1. Им можно регистрировать траектории всех частиц, пролетевших сквозь фотопластинку за время наблюдения. 2. Фотопластинка всегда готова для применения (эмульсия не требует процедур, которые приводили бы ее в рабочее состояние). 3. Эмульсия обладает большой тормозящей способностью, обусловленной большой плотностью. 4. Он дает неисчезающий след частицы, который потом можно тщательно изучать. Недостатком метода является длительность и сложность химической обработки фотопластинок и главное много времени требуется для рассмотрения каждой пластинки в сильном микроскопе.
16 Искровая камера Искровая камера – трековый детектор заряженных частиц, в котором трек (след) частицы образует цепочка искровых электрических разрядов вдоль траектории её движения. Трек частицы в узкозазорной искровой камере 1959 г. С.Фукуи, С.Миямото. Искровая камера. Разряд в газе при его ударной ионизации.
17 Искровая камера обычно представляет собой систему параллельных металлических электродов, пространство между которыми заполнено инертным газом. Расстояние между пластинами от 1-2 см до 10 см. Широко используются проволочные искровые камеры, электроды которых состоят из множества параллельных проволочек. Внешние управляющие счётчики фиксируют факт попадания заряженной частицы в. искровую камеру и инициируют подачу на её электроды короткого (10 – 100 нс) высоковольтного импульса чередующейся полярности так, что между двумя соседними электродами появляется разность потенциалов 10 кВ. В местах прохождения заряженной частицы между пластинами за счёт ионизации ею атомов среды свободные носители зарядов (электроны, ионы), что вызывает искровой пробой (разряд).
18 . Внешний вид двухсекционной искровой камер Пространственное разрешение обычной искровой камеры 0.3 мм. Частота срабатывания 10 – 100 Гц. Искровые камеры могут иметь размеры порядка нескольких метров. Искровая камера
20 Название метода Принцип действия ДостоинстваНедостатки
Еще похожие презентации в нашем архиве:
© 2025 MyShared Inc.
All rights reserved.
Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемschool15.tgl.ru
1 Каковы примерно размеры атома?
2 Какую модель атома предложил Томсон?
3 Чем исследовал атом Резерфорд?
4 Каковы результаты опыта Резерфорда?
5 Чем можно было объяснить такие результаты?
6 Методы наблюдения и регистрации элементарных частиц
7 Счётчик Гейгера Камера Вильсона Пузырьковая камера Фотографические эмульсии Сцинтилляционный метод Методы наблюдения и регистрации элементарных частиц Искровая камера
8 Сцинтилляционный счётчик, прибор для регистрации ядерных излучений и элементарных частиц (протонов, нейтронов, электронов, y - квантов, мезонов и т. д.). Основным элементом счетчика является вещество, люминесцирующее под действием заряженных частиц (сцинтиллятор). При попадании заряженной частицы на полупрозрачный экран, покрытый сульфидом цинка, возникает вспышка света (СЦИНТИЛЛЯЦИЯ). Вспышку можно наблюдать и фиксировать. Прибор состоит из сцинтиллятора, фотоэлектронного умножителя и электронной системы.
9 Счетчик Гейгера. Схема Фотография Ханс Гейгер В газоразрядном счетчике имеются катод в виде цилиндра и анод в виде тонкой проволоки по оси цилиндра. Пространство между катодом и анодом заполняется специальной смесью газов. Между катодом и анодом прикладывается напряжение. U
10 + - R К усилителю Стеклянная трубка Анод Катод Счётчик Гейгера применяется в основном для регистрации электронов и y - квантов(фотонов большой энергии). Счётчик регистрирует почти все падающие в него электроны. Регистрация сложных частиц затруднена. Счетчик Гейгера. Чтобы зарегистрировать y- кванты, стенки трубки покрывают специальным материалом, из которого они выбивают электроны.
11 Камеру Вильсона можно назватьокном в микромир. Она представляет собой герметично закрытый сосуд, заполненный парами воды или спирта, близкими к насыщению. Стеклянная пластина поршень вентиль Вильсон - английский физик, член Лондонского королевского общества. Изобрёл в 1912 г прибор для наблюдения и фотографирования следов заряжённых частиц, впоследствии названную камерой Вильсона ( Нобелевская премия, 1927). Камера Вильсона Советские физики П.Л. Капица и Д.В. Скобельцин предложили помещать камеру Вильсона в однородное магнитное поле.
12 Если частицы проникают в камеру, то на их пути возникают капельки воды. Эти капельки образуют видимый след пролетевшей частицы - трек. По длине трека можно определить энергию частицы, а по числу капелек на единицу длины оценивается её скорость. Трек имеет кривизну. Первое искусственное превращение элементов – взаимодействие частицы с ядром азота, в результате которого образовались ядро кислорода и протон.
13 При понижении давления жидкость в камере переходит в перегретое состояние. поршень Пузырьковая камера Пролёт частицы вызывает образование цепочки капель, которые можно сфотографировать. Фотография столкновения элементарных частиц в главной пузырьковой камере ускорителя Европейского центра ядерных исследований (ЦЕРН) в Женеве, Швейцария. Траектории движения элементарных частиц расцвечены для большей ясности картины. Голубыми линиями отмечены следы пузырьков, образующихся вокруг атомов, возбужденных в результате пролета быстрых заряженных частиц Д.Глейзер. Вскипание перегретой жидкости.
14 Заряжённые частицы создают скрытые изображения следа движения. По длине и толщине трека можно оценить энергию и массу частицы. Фотоэмульсия имеет большую плотность, поэтому треки получаются короткими. Фотографические эмульсии Метод толстослойных фотоэмульсий. 20-е г.г. Л.В.Мысовский, А.П.Жданов. Треки элементарных частиц в толстослойной фотоэмульсии Наиболее дешевым методом регистрации ионизирующего излучения является фотоэмульсионный (или метод толстослойных эмульсий). Он базируется на том, что заряженная частица, двигаясь в фотоэмульсии, разрушает молекулы бромида серебра в зернах, сквозь которые прошла. После проявления такой пластинки в ней возникают «дорожки» из осевшего серебра, хорошо видимые в микроскоп. Каждая такая дорожка это след движущейся частицы. По характеру видимого следа (его длине, толщине и т. п.) можно судить как о свойствах частицы, которая оставила след (ее энергии, скорости, массе, направлении движения), так и о характере процесса (рассеивание, ядерная реакция, распад частиц), если он произошел в эмульсии.
15 На рисунке изображены следы в фотоэмульсии. Этот метод имеет такие преимущества: 1. Им можно регистрировать траектории всех частиц, пролетевших сквозь фотопластинку за время наблюдения. 2. Фотопластинка всегда готова для применения (эмульсия не требует процедур, которые приводили бы ее в рабочее состояние). 3. Эмульсия обладает большой тормозящей способностью, обусловленной большой плотностью. 4. Он дает неисчезающий след частицы, который потом можно тщательно изучать. Недостатком метода является длительность и сложность химической обработки фотопластинок и главное много времени требуется для рассмотрения каждой пластинки в сильном микроскопе.
16 Искровая камера Искровая камера – трековый детектор заряженных частиц, в котором трек (след) частицы образует цепочка искровых электрических разрядов вдоль траектории её движения. Трек частицы в узкозазорной искровой камере 1959 г. С.Фукуи, С.Миямото. Искровая камера. Разряд в газе при его ударной ионизации.
17 Искровая камера обычно представляет собой систему параллельных металлических электродов, пространство между которыми заполнено инертным газом. Расстояние между пластинами от 1-2 см до 10 см. Широко используются проволочные искровые камеры, электроды которых состоят из множества параллельных проволочек. Внешние управляющие счётчики фиксируют факт попадания заряженной частицы в. искровую камеру и инициируют подачу на её электроды короткого (10 – 100 нс) высоковольтного импульса чередующейся полярности так, что между двумя соседними электродами появляется разность потенциалов 10 кВ. В местах прохождения заряженной частицы между пластинами за счёт ионизации ею атомов среды свободные носители зарядов (электроны, ионы), что вызывает искровой пробой (разряд).
18 . Внешний вид двухсекционной искровой камер Пространственное разрешение обычной искровой камеры 0.3 мм. Частота срабатывания 10 – 100 Гц. Искровые камеры могут иметь размеры порядка нескольких метров. Искровая камера
20 Название метода Принцип действия ДостоинстваНедостатки
Еще похожие презентации в нашем архиве:
© 2025 MyShared Inc.
All rights reserved.