Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемsh4ghegdomyn.ucoz.ru
1 Теория вероятности. Страницы развития теории вероятности как науки. Подготовил: Морозов Кирилл, ученик 10Б класса, МКОУ СОШ 4 п. Чегдомын.
2 Азартные игры Богатый материал для наблюдения за случайностью на протяжении многих веков давали азартные игры
3 Оказывается, что при многократном повторении опыта частота события принимает значения, близкие к некоторому постоянному числу. Например, при многократном бросании игральной кости частота выпадения каждого из чисел очков от 1 до 6 колеблется около числа Многократно проводились опыты бросания однородной монеты, в которых подсчитывали число появления «герба», и каждый раз, когда число опытов достаточно велико, частота события «выпадения герба» незначительно отличалась от
4 Экспериментатор Число бросаний Число выпадений герба Частота Ж. Бюффон ,5080 К. Пирсон ,5016 К. Пирсон ,5006 Рассмотрим таблицу результатов, полученных в 18 веке французским естествоиспытателем Жоржем Луи Леклерк Бюффоном(1707 – 1788) и в начале 20 века – английским статистиком Карлом Пирсоном (1857 – 1936).
5 Зная вероятность события, мы можем прогнозировать частоту его появления в будущем при большом количестве соответствующих экспериментов. Замечание ! Если при проведении большого числа случайных экспериментов значения относительной частоты случайного события близки к некоторому определенному числу, то говорят, что относительная частота имеет статистическую устойчивость, а такие случайные эксперименты называют статистически устойчивым. Чем больше число проведенных случайных экспериментов, тем ближе значение относительной частоты случайного события к вероятности этого события.
6 Первые работы по теории вероятностей, принадлежащие французским учёным Б. Паскалю и П. Ферма и голландскому учёному X. Гюйгенсу, появились в связи с подсчётом различных вероятностей в азартных играх. П. Ферма Б.Паскаль
7 Одна из самых знаменитых задач, способствовавших развитию теории вероятностей, была задача о разделе ставки, помещенная в книге Луки Пачоли (1445- ок.1514). Книга называлась «Сумма знаний по арифметике, геометрии, отношении и пропорции» и была опубликована в Венеции в 1494 году.
8 Задача Пачоли Двое играют в некоторую игру, где шансы на победу у каждого игрока одинаковы. Игроки договорились играть до 6 побед, но игра остановилась, когда у одного было 5 побед, а у другого – 3. Как следует разделить приз? (Сам Пачоли считал, что приз надо делить пропорционально количеству выигранных партий. Однако правильный ответ не так прост.)
9 Теория вероятностей как наука Но как математическая наука теория вероятности начинается с работы выдающегося швейцарского математика Якоба Бернулли ( ) «Искусство предположений». В этом трактате доказано ряд теорем, в том числе и самая известная теорема «Закон больших чисел»
10 Теория вероятностей как наука Выдающийся голландский математик, механик, астроном и изобретатель Х.Гюйгенс ( ) под влиянием переписки Паскаля и Ферма заинтересовался задачами вероятностного характера, результатом чего явилась работа «О расчетах в азартных играх». Трактат Гюйгенса выдержал несколько изданий и был единственной книгой по теории вероятности в XVII веке.
11 В 18-ом 19-ом веках теория вероятностей находит ряд весьма актуальных применений в естествознании и технике, главным образом в теории ошибок наблюдений, развившейся в связи с развитием геодезии, астрономии и теории стрельбы. В будущем она поможет определить количество брака на производстве, погрешность в статистике, демографии экономике и многом другом.
12 Русский период в развитии теории вероятности Особенно быстро теория вероятностей развивалась во второй половине XIX и XX вв. Здесь фундаментальные открытия были сделаны математиками Петербургской школы П.Л.Чебышёвым ( ), А.М.Ляпуновым ( ), А.А.Марковым ( ).
13 А.Н.Колмогоров ( ) Вклад в развитие теории вероятностей Положил начало общей теории случайных процессов. В 1933 году разработал аксиоматику, которая в настоящее время является общепринятой.
14 «Теория вероятностей есть в сущности не что иное, как здравый смысл, сведенной к исчислению» Пьер-Симон Лаплас (французский математик)
15 Спасибо за внимание
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.