Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемdssp.petrsu.ru
1 Микроминиатюризация и приборы наноэлектроники Подготовил Щербанич М.С.
2 Микроминиатюризация Микроминиатюризация это научно- техническое направление, при котором добиваются уменьшения габаритов, веса и потребления энергии при одновременном повышении надежности аппаратуры и облегчении автоматизации ее производства. Тенденция микроминиатюризации для электроники постоянна, она опирается в первую очередь на достижения микроэлектроники.
3 Анализ показывает, что наряду с тенденцией уменьшения геометрических размеров каждого элемента в схемах проявляется тенденция к увеличению числа элементов в схеме. Если в начале 1960-х годов число элементов в схеме составляло десятки, то в начале 2000-х годов число элементов в схеме составляет сотни миллионов. Обращает на себя внимание тот факт, что в настоящее время плотность упаковки приближается к пределу, обусловленному физическими ограничениями.
4 Физические ограничения микроминиатюризации
5 Наноэлектроника Наноэлектроника предполагает использование элементов нанометрового диапазона и даже отдельных молекул. Фундаментальной задачей наноэлектроники является создание электронных устройств и проводников молекулярных размеров. Решение этой задачи позволило бы конструировать сверхбыстрые и сверхкомпактые компьютеры, использующие принципиально новые квантовые алгоритмы.
6 По мере приближения размеров твердотельных структур к нанометровой области (1нм = 0,001мкм = м), а это образования из единиц и десятков атомов, все больше проявляются квантовые свойства электрона. В его поведении преобладающими становятся волновые закономерности, характерные для квантовых частиц. С одной стороны, это приводит к нарушению работоспособности классических транзисторов, использующих закономерности поведения электрона как классической частицы, а с другой - открывает перспективы создания новых уникальных переключающих, запоминающих и усиливающих элементов для информационных систем. Последние и являются основным объектом исследований и разработок наноэлектроники.
7 Квантовые основы наноэлектроники С позиций квантовой механики электрон может быть представлен волной, описываемой соответствующей волновой функцией. Распространение этой волны в наноразмерных твердотельных структурах контролируется эффектами, связанными с квантовым ограничением, интерференцией и возможностью туннелирования через потенциальные барьеры.
8 Квантовое ограничение Волна, соответствующая свободному электрону в твердом теле, может беспрепятственно распространяться в любом направлении. Ситуация кардинально меняется, когда электрон попадает в твердотельную структуру, размер которой L, по крайней мере в одном направлении, ограничен и по своей величине сравним с длиной электронной волны. Классическим аналогом такой структуры является струна с жестко закрепленными концами. Колебания струны могут происходить только в режиме стоячих волн с длиной волны, n = 1, 2, 3,...
9 Аналогичные закономерности поведения характерны и для свободного электрона, находящегося в твердотельной структуре ограниченного размера или области твердого тела, ограниченной непроницаемыми потенциальными барьерами.
10 Запирание электрона с эффективной массой m *, по крайней мере в одном из направлений, в соответствии с принципом неопределенности приводит к увеличению его импульса на величину ħ/L. Соответственно увеличивается и кинетическая энергия электрона на величину ΔE = ħ 2 k 2 /2m * Таким образом, квантовое ограничение сопровождается как увеличением минимальной энергии запертого электрона, так и дополнительным квантованием энергетических уровней, соответствующих его возбужденному состоянию. Это приводит к тому, что электронные свойства наноразмерных структур отличаются от известных объемных свойств материала, из которого они сделаны.
11 Интерференционные эффекты Взаимодействие электронных волн в наноразмерных структурах как между собой, так и с неоднородностями в них может сопровождаться интерференцией, аналогичной той, которая наблюдается для световых волн. Отличительная особенность такой интерференции состоит в том, что благодаря наличию у электронов заряда имеется возможность управлять ими с помощью локального электростатического или электромагнитного поля и таким образом влиять на распространение электронных волн.
12 Туннелирование Уникальным свойством квантовых частиц, в том числе и электронов, является их способность проникать через преграду даже в случаях, когда их энергия ниже потенциального барьера, соответствующего данной преграде. Это было названо туннелированием.
13 Другим специфическим проявлением квантового ограничения является одноэлектронное туннелирование в условиях кулоновской блокады. Чтобы объяснить этот термин, рассмотрим иллюстрируемый на рисунке пример прохождения электроном структуры металл-диэлектрик-металл. Первоначально граница раздела между металлом и диэлектриком электрически нейтральна. При приложении к металлическим областям потенциала на этой границе начинает накапливаться заряд. Это продолжается до тех пор, пока его величина не окажется достаточной для отрыва и туннелирования через диэлектрик одного электрона. После акта туннелирования система возвращается в первоначальное состояние. При сохранении внешнего приложенного напряжения все повторяется вновь. Таким образом, перенос заряда в такой структуре осуществляется порциями, равными заряду одного электрона. Процесс же накопления заряда и отрыва электрона от границы металла с диэлектриком определяется балансом сил кулоновского взаимодействия этого электрона с другими подвижными и неподвижными зарядами в металле.
14 Рассмотренные квантовые явления уже используются в разработанных к настоящему времени наноэлектронных элементах для информационных систем. Однако следует подчеркнуть, что ими не исчерпываются все возможности приборного применения квантового поведения электрона. Активные поисковые исследования в этом направлении продолжаются и сегодня.
15 Примеры приборов наноэлектроники – одноэлектроный транзистор В 1986 году советскими учеными К.К. Лихаревым и Д.В. Авериным, изучавшими одноэлектронное туннелирование, был предложен, а позже и опробован одноэлектронный транзистор на эффекте кулоновской блокады. В его конструкции, состоящей из двух последовательно включенных туннельных переходов, туннелирование индивидуальных электронов контролируется кулоновской блокадой, управляемой потенциалом, приложенным к активной области транзистора, расположенной в его середине между двумя прослойками тонкого диэлектрика. Количество электронов в этой области прибора должно быть не более 10, а желательно и меньше. Это может быть достигнуто в квантовых структурах с размером порядка 10 нм. В цифровых интегральных схемах на одноэлектронных транзисторах один бит информации, то есть два возможных состояния 0 и 1, может быть представлен как присутствие или отсутствие индивидуального электрона. Тогда однокристальная схема памяти емкостью бит, что в 1000 раз больше, чем у современных сверхбольших интегральных схем, разместится на кристалле площадью всего 6,45 см 2. Над практической реализацией этих перспектив сегодня активно работают специалисты ведущих американских, японских и европейских электронных фирм.
16 Примеры приборов наноэлектроники – атомные переключающие структуры В 1993 году японскими учеными (Ю. Вада и др.) было разработано новое семейство цифровых переключающих приборов на атомных и молекулярных шнурах. Базовая ячейка состоит из атомного шнура, переключающего атома (на рисунке он показан красным цветом) и переключающего электрода. Общий размер такой структуры составляет менее 10 нм, а рабочие частоты оцениваются величинами порядка Гц. Принцип работы атомного реле состоит в следующем. Переключающий атом смещается из атомного шнура электрическим полем, приложенным к переключающему электроду. Реле переходит в выключенное состояние. Теоретически показано, что зазор в атомном шнуре величиной 0,4 нм является достаточным, чтобы прервать продвижение по нему электронов.
17 Заключение Разработанные в последние годы наноэлектронные элементы по своей миниатюрности, быстродействию и потребляемой мощности составляют серьезную конкуренцию традиционным полупроводниковым транзисторам и интегральным микросхемам на их основе как главным элементам информационных систем. Уже сегодня техника вплотную приблизилась к теоретической возможности запоминать и передавать 1 бит информации (0 и 1) с помощью одного электрона, локализация которого в пространстве может быть задана одним атомом. Ожидает практического разрешения и идея аналогичных однофотонных элементов. Широкое применение одноэлектронных и однофотонных элементов для создания информационных систем пока сдерживается недостаточной их изученностью, а главное, необходимостью обладать технологией - нанотехнологией, позволяющей конструировать требуемые структуры из отдельных атомов. Такие возможности существуют только в исследовательских лабораториях. Однако современные темпы развития электроники позволяют уверенно прогнозировать промышленное освоение нанотехнологии, а вместе с ней и наноэлектроники уже в начале XXI века.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.