Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемmoemesto.ru
1 Разложение многочлена на множители способом группировки 7 класс
2 Содержание Вынесение общего множителя за скобки Способ группировки Прием предварительного преобразования Прием предварительного преобразования К содержанию
3 Вынесение общего множителя за скобки Вынесение общего множителя за скобки Из каждого слагаемого, входящего в многочлен, выносится некоторый одночлен, входящий в качестве множителя во все слагаемые. Таким общим множителем может быть не только одночлен, но и многочлен.
4 Алгоритм нахождения общего множителя нескольких одночленов Найти наибольший общий делитель коэффициентов всех одночленов, входящих в многочлен, - он и будет общим числовым множителем (разумеется, это относится только к случаю целочисленных коэффициентов). Найти переменные, которые входят в каждый член многочлена, и выбрать для каждой из них наименьший (из имеющихся) показатель степени. Произведение коэффициента, найденного на первом шаге, является общим множителем, который целесообразно вынести за скобки.
5 Пример Разложить на множители: x 4 y 3 - 2x 3 y 2 + 5x 2. Воспользуемся сформулированным алгоритмом. 1) Наибольший общий делитель коэффициентов –1, -2 и 5 равен 1. 1) Переменная x входит во все члены многочлена с показателями соответственно 4, 3, 2; следовательно, можно вынести за скобки x 2. 2) Переменная y входит не во все члены многочлена; значит, ее нельзя вынести за скобки. Вывод: за скобки можно вынести x 2. Правда, в данном случае целесообразнее вынести -x 2. Получим: -x 4 y 3 -2x 3 y 2 +5x 2 =-x 2 (x 2 y 3 +2xy 2 -5). К содержанию
6 Способ группировки Бывает, что члены многочлена не имеют общего множителя, но после заключения нескольких членов в скобки (на основе переместительного и сочетательного законов сложения) удается выделить общий множитель, являющийся многочленом.
7 1. Сгруппировать его члены так, чтобы слагаемые в каждой группе имели общий множитель 2. Вынести в каждой группе общий множитель в виде одночлена за скобки 3. Вынести в каждой группе общий множитель (в виде многочлена) за скобки. Алгоритм разложения многочлена на множители способом группировки:
8 Для уяснения сути способа группировки рассмотрим следующий пример: разложить на множители многочлен xy–6+3x–2y
9 xy-6+3x-2y= =(xy-6)+(3x-2y). Группировка неудачна. Первый способ группировки:
10 Второй способ группировки xy-6+3x-2y=(xy+3x)+(-6-2y)= =x(y+3)-2(y+3)= =(y+3)(x-2).
11 xy-6+3y-2y=(xy-2y)+(-6+3x)= =y(x-2)+3(x-2)= =(x-2)(y+3). Третий способ группировки:
12 Как видите, не всегда с первого раза группировка оказывается удачной. Если группировка оказалась неудачной, откажитесь от нее, ищите иной способ. По мере приобретения опыта вы будете быстро находить удачную группировку. xy-6+3y-2y=(x-2)(y+3). К содержанию
13 Повторим!!!
14 Три пути ведут к знанию: путь размышления – это путь самый благородный, путь подражания – это путь самый легкий и путь опыта – это путь самый горький. Конфуций Определение представление многочлена в виде произведения двух или нескольких многочленов Разложение многочлена на множители - это
15 Завершите утверждение. Представление многочлена в виде произведения одночлена и многочлена называется
16 2. Завершить утверждение. Представление многочлена в виде произведения одночлена и многочлена называется вынесением общего множителя за скобки.
17 3. Восстановите порядок выполнения действий при разложении многочлена на множители способом группировки. Чтобы разложить многочлен на множители способом группировки, нужно вынести в каждой группе общий множитель (в виде многочлена) за скобки сгруппировать его члены так, чтобы слагаемые в каждой группе имели общий множитель вынести в каждой группе общий множитель в виде одночлена за скобки
18 3. Восстановите порядок выполнения действий при разложении многочлена на множители способом группировки. Чтобы разложить многочлен на множители способом группировки, нужно вынести в каждой группе общий множитель (в виде многочлена) за скобки сгруппировать его члены так, чтобы слагаемые в каждой группе имели общий множитель вынести в каждой группе общий множитель в виде одночлена за скобки
19 Проверочная работа Задание. Провести классификацию данных многочленов по способу разложения на множители: 1) вынесение общего множителя за скобки; 2) не раскладывается на множители; 3) способ группировки.
20 Результат работы 1 2 3
21 Один из приемов разложения на множители Сложно, но очень понятно
22 Прием предварительного преобразования. Некоторый член многочлена раскладывается на необходимые слагаемые или дополняется путем прибавления к нему некоторого слагаемого. В последнем случае, чтобы многочлен не изменился, от него отнимается такое же слагаемое.
23 Разложение на множители Решение: Комбинировали три приема: - вынесение общего множителя за скобки; - предварительное преобразование; - группировку.
24 Надеюсь этот материал был полезным !
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.