Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 12 лет назад пользователемlearning.9151394.ru
2 Разложение многочленов на множители.. Обобщающий урок по теме «Разложение на множители»
3 Немного теории Разложить многочлен на множители значит представить его в виде произведения более простых многочленов. Существует несколько способов разложения: Вынесение общего множителя за скобки Вынесение общего множителя за скобки Способ группировки Способ группировки С помощью формул сокращенного умножения С помощью формул сокращенного умножения
4 Вынесение общего множителя за скобки Алгоритм отыскания общего множителя нескольких одночленов Найти наибольший общий делитель коэффициентов всех одночленов, входящих в многочлен, - он и будет общим числовым множителем (разумеется, это относится только к случаю целочисленных коэффициентов) Найти переменные, которые входят в каждый член многочлена, и выбрать для каждой из них наименьший (из имеющихся) показатель степени Произведение коэффициента, найденного на первом шаге, и переменных, найденных на втором шаге, является общим множителем, который целесообразно вынести за скобки.
5 Пример Разложить на множители: -x 4 y 3 -2x 3 y 2 +5x 2. Воспользуемся сформулированным алгоритмом. 1) 1) Наибольший общий делитель коэффициентов –1, -2 и 5 равен 1( - 1 ). 2) 2) Переменная x входит во все члены многочлена с показателями соответственно 4, 3, 2; следовательно, можно вынести за скобки x 2. 3) 3) Переменная y входит не во все члены многочлена; значит, ее нельзя вынести за скобки. Вывод: за скобки можно вынести x 2 ( - х 2 ). В данном случае целесообразнее вынести -x 2. Получим: -x 4 y 3 -2x 3 y 2 +5x 2 =-x 2 (x 2 y 3 +2xy 2 -5).
6 Способ группировки Для уяснения сути способа группировки рассмотрим следующий пример: разложить на множители многочлен xy-6+3y-2y Первый способ группировки: xy-6+3y-2y=(xy-6)+(3x-2y). Группировка неудачна. Второй способ группировки: xy-6+3y-2y=(xy+3x)+(-6-2y)=x(y+3)-2(y+3)=(y+3)(x-2). Третий способ группировки: xy-6+3y-2y=(xy-2y)+(-6+3x)=y(x-2)+3(x-2)=(x-2)(y+3). Ответ: xy-6+3y-2y=(x-2)(y+3). Как видите, не всегда с первого раза группировка оказывается удачной. Если группировка оказалась неудачной, откажитесь от нее, ищите иной способ. По мере приобретения опыта, вы будете быстро находить удачную группировку.
7 Разложение многочлена на множители с помощью формул сокращенного умножения Вспомните эти формулы: a 2 -b 2 =(a-b)(a+b); a 3 -b 3 =(a-b)(a 2 +ab+b 2 ); a 3 +b 3 =(a+b)(a 2 -ab+b 2 ); a 2 +2ab+b 2 =(a+b) 2 ; a 2 -2ab+b 2 =(a-b) 2. Первую из этих формул можно применять к выражению, представляющему собой разность квадратов (безразлично чего – чисел, одночленов, многочленов), вторую и третью – к выражению, представляющему собой разность (или сумму) кубов; последние две формулы применяются к трехчлену, представляющему собой полный квадрат, т.е. содержащему сумму квадратов двух выражений и удвоенное произведение тех же выражений.
8 Примеры Разложить на множители: 1) x 6 -4a 4. Воспользуемся первой формулой (разность квадратов): x 6 -4a 4 =(x 3 ) 2 -(2a 2 ) 2 =(x 2 -2a 2 )(x 3 +2a 2 ). 2) a 6 +27b 3. Воспользуемся третьей формулой (сумма кубов): a 6 +27b 3 =(a 2 ) 3 +(3b) 3 =(a 2 +3b)((a 2 ) 2 -a 2 ·3b+(3b) 2 )= =(a 2 +3b)(a 4 -3a 2 b+9b 4 ). 3) a 2 -4ab+4b 2. В этом примере дан трехчлен, для его разложения на множители будем пользоваться пятой формулой, если, конечно, убедимся в том, что трехчлен является полным квадратом: a 2 -4ab+4b 2 =a 2 +(2b) 2 -2·a·2b=(a-2b) 2. Мы убедились, что трехчлен содержит сумму квадратов одночленов a и 2b, а также удвоенное произведение этих одночленов. Значит, это полный квадрат, причем квадрат разности.
9 Разложение многочлена на множители с помощью комбинации различных приемов В математике не так часто бывает, чтобы при решении примера применялся только один прием, чаще встречаются комбинированные примеры, где сначала используется один прием, затем другой и т.д. Чтобы успешно решать такие примеры, мало знать сами приемы, надо еще уметь выработать план их последовательного применения. Иными словами, здесь нужны не только знания, но и опыт. Вот такие комбинированные примеры мы и рассмотрим.
10 Пример 1 Разложить на множители многочлен 36a 6 b 3 -96a 4 b 4 +64a 2 b 5 1) Сначала займемся вынесением общего множителя за скобки. Рассмотрим коэффициенты 36, 96, 64. Все они делятся на 4, причем это – наибольший общий делитель, вынесем его за скобки. Во все члены многочлена входит переменная a (соответственно a 6, a 4, a 2 ), поэтому за скобки можно вынести a 2. Точно так же во все члены многочлена входит переменная b (соответственно b 3, b 4, b 5 ) – за скобки можно вынести b 3. Итак, за скобки вынесем 4a 2 b 3. Тогда получим: 36a 6 b 3 -96a 4 b 4 +64a 2 b 5 =4a 2 b 3 (9a 4 -24a 2 b+16b 2 ). 2) Рассмотрим трехчлен в скобках: 9a 4 -24a 2 b+16b 2. Выясним, не является ли он полным квадратом. Имеем: 9a 4 -24a 2 b+16b 2 =(3a 2 ) 2 +(4b) 2 -2·3a 2 ·4b. Все условия полного квадрата соблюдены, следовательно, 9a 4 -24a 2 b+16b 2 =(3a 2 -4b) 2. 3) Комбинируя два приема (вынесение общего множителя за скобки и использование формул сокращенного умножения), получаем окончательный результат: 36a 6 b 3 -96a 4 b 4 +64a 2 b 5 =4a 2 b 3 (3a 2 -4b) 2.
11 Пример 2 Разложить на множители x 4 +x 2 a 2 +a 4 Применим метод выделения полного квадрата. Для этого представим x 2 a 2 в виде 2x 2 a 2 -x 2 a 2. Получим: x 4 +x 2 a 2 +a 4 =x 4 +2x 2 a 2 -x 2 a 2 +a 4 = =(x 4 +2x 2 a 2 +a 4 )-x 2 a 2 = =(x 2 +a 2 ) 2 -(xa) 2 =(x 2 +a 2 +xa)(х 2 +а 2 -ха).
12 ОСНОВНЫЕ РЕЗУЛЬТАТЫ Вы Вы познакомились со следующими приемами разложения многочлена на множители: вынесение общего множителя за скобки; группировка; использование формул сокращенного умножения; выделение полного квадрата.
Ссылка на источник: learning.9151394.ru
Еще похожие презентации в нашем архиве:
© 2025 MyShared Inc.
All rights reserved.