Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 12 лет назад пользователемmath-sol.ucoz.ru
1 Проект на тему: Решение уравнений II,III,IV степени. Выполнил: Сармутдинов Талгат «10а» Проверила: Яковлева Т.П.
2 План: 1) Квадратные уравнения. 2) Теорема Виета. 3) Из истории. 4) Формула Кардано. 5) Метод Феррари.
3 Решение уравнений II,III,IV-й степеней по формуле. Уравнения первой степени, т.е. линейные, нас учат решать ещё с первого класса, и особого интереса к ним не проявляют. Интересны нелинейные уравнения т.е. больших степеней. Среди нелинейных ( уравнений общего вида, не решающихся разложением на множители или каким-либо другим относительно простым способом ) уравнения низших степеней (2,3,4- й) можно решить с помощью формул. Уравнения 5-й степени и выше неразрешимы в радикалах (нет формулы). Поэтому мы рассмотрим только три метода.
4 I. Квадратные уравнения. Формула Виета. Дискриминант квадратного трехчлена. I. Квадратные уравнения. Формула Виета. Дискриминант квадратного трехчлена. Для любого приведённого кв. уравнения справедлива формула : Для любого приведённого кв. уравнения справедлива формула : Обозначим: D=p-4q тогда формула примет вид: Обозначим: D=p-4q тогда формула примет вид: Выражение D называют дискриминантом. При исследовании кв. трехчлена смотрят на знак D. Если D>0,то корней 2; D=0, то корень 1; если D 0,то корней 2; D=0, то корень 1; если D
5 II. Теорема Виета Для любого приведённого кв. уравнения Для любого приведённого кв. уравнения Справедлива теорема Виета: Для любого уравнения n-ой степени теорема Виета также справедлива: коэффициент взятый с противоположным знаком, равен сумме его n корней; свободный член равен произведению n его корней и числа (-1) в n степени. Для любого уравнения n-ой степени теорема Виета также справедлива: коэффициент взятый с противоположным знаком, равен сумме его n корней; свободный член равен произведению n его корней и числа (-1) в n степени.
6 Вывод формулы Виета. Запишем формулу квадрата суммы Запишем формулу квадрата суммы И заменим в ней a на х, b на И заменим в ней a на х, b на Получим: Получим: Теперь отсюда вычтем первоначальное равенство: Теперь отсюда вычтем первоначальное равенство: Теперь нетрудно получить нужную формулу. Теперь нетрудно получить нужную формулу.
7 Пример :
8 III. Из истории. В XV-XVI вв. расцвет науки происходит главным образом в Италии, во Франции и в Германии, а позднее, - в конце 16 в., - в Голландии, которая в это время переживала первую в Европе буржуазную революцию.
9 Итальянские математики 16 в. сделали крупнейшее математическое открытие. Они нашли формулы для решения уравнений третьей и четвертой степеней. Рассмотрим произвольное кубическое уравнение: И покажем, что с помощью подстановки его можно преобразить к виду Пусть Получим: Положим т.е. Тогда данное уравнение примет вид
10 В 16 в. было распространено соревнование между учеными, проводившееся в форме диспута. Математики предлагали друг другу определенное число задач, которые нужно было решить к началу поединка. Выигрывал тот, кто решил большее число задач. Антонио Фиоре постоянно участвовал в турнирах и всегда выигрывал, так как владел формулой для решения кубических уравнений. Победитель получал денежное вознаграждение, ему предлагали почетные, высоко оплачиваемые должности.
11 IV. Тарталья преподавал математику в Вероне, Венеции, Брешии. Перед турниром с Фиоре он получил от противника 30 задач, увидев,что все они сводятся к кубическому уравнению И приложил все силы для его решения. Отыскав формулу, Тарталья решил все задачи, преложенные ему Фиоре, и выиграл турнир. Через день после поединка он нашел формулу для решения уравнения Это было величайшее открытие. После того как в Древнем Вавилоне была найдена формула для решения квадратных равнений, выдающиеся математики в течение двух тысячелетий безуспешно пытались найти формулу для решений кубических уравнений. Метод решения Тарталья держал втайне. Рассмотрим уравнение Тарталья использовал подстановку
12 Из уравнения он получил: Для u и v получена система Значит, они являются корнями квадратного уравнения Следовательно, для отыскания х имеем формулу
13 Ее называют сейчас формулой Кардано, так как она впервые была опубликована в 1545 г. в книге Кардано «Великое искусство, или Об алгебраических правилах». Джироламо Кардано ( ) окончил университет в Падуе. Его главным занятием была медицина. Кроме того, он занимался философией, математикой, астрологией, составлял гороскопы Петрарки, Лютера, Христа, английского короля Эдуарда 6. Папа римский пользовался услугами Кардано - астролога и покровительствовал ему. Кардано умер в Риме. Существует легенда, что он покончил жизнь самоубийством в тот день, который предсказал, составляя собственный гороскоп, как день своей смерти.
14 Кардано неоднократно обращался к Тарталье с просьбой сообщить ему формулу для решения кубических уравнений и обещал хранить ее тайну. Он не сдержал слова и опубликовал формулу, указав, что Тарталье принадлежит честь открытия «такого прекрасного и удивительного, превосходящего все таланты человеческого духа». В книге Кардано «Великое искусство…» опубликована также формула для решения уравнений четвертой степени, которую открыл Луиджи Феррари ( )- ученик Кардано, его секретарь и поверенный.
15 V. Изложим метод Феррари. Запишем общее уравнение четвертой степени: С помощью подстановки его можно привести к виду Используя метод дополнения до полного квадрата, запишем: Феррари ввел параметр и получил: Отсюда Учитывая, получим В левой части уравнения стоит полный квадрат, а в правой - квадратный трехчлен относительно х. Чтобы правая часть была полным квадратом, необходимо и достаточно, чтобы дискриминант квадратного трехчлена равнялся нулю, т.е. число t должно удовлетворять уравнению
16 Кубические уравнения Феррари решил по формуле Кардано. Пусть - корень уравнения. Тогда уравнение запишется в виде Кубические уравнения Феррари решил по формуле Кардано. Пусть - корень уравнения. Тогда уравнение запишется в виде Отсюда получаем два квадратных уравнения: Отсюда получаем два квадратных уравнения: Они дают четыре корня исходного уравнения. Они дают четыре корня исходного уравнения.
17 Приведем пример. Рассмотрим уравнение Легко проверить, что -корень этого уравнения. Естественно считать, что, используя формулу Кардано, мы найдем этот корень. Проведем вычисления, учитывая, что По формуле находим: Как понять выражение На этот вопрос первым ответил инженер Рафаэль Бомбелли (ок ), работавший в Болонье В 1572 г. он издал книгу «Алгебра», в которую ввел в математику число i, такое, что Бомбелли сформулировал правила операций с числом Согласно теории Бомбелли,выражение можно записать так: А корень уравнения, имеющий вид, можно записать так:
18 Вывод: Изучая данную тему, я пришёл к выводу, что существуют формулы для решения уравнений II, III, IV степеней, не входящие в школьный курс математики. Корни уравнения не всегда действительные числа.
19 Список использованной литературы: 1) Энциклопедия для школьников. Математика 1998 г. 1) Энциклопедия для школьников. Математика 1998 г. 2) История математики. К.А. Рыбников 2) История математики. К.А. Рыбников
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.