Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 12 лет назад пользователемasv420.narod.ru
1 B8B8B8B8 Математика Ф.И.________________________ Задача – 2010 ЕГЭ Презентация по материалам рабочей тетради «Задача В8» авторов И.В. Ященко, П.И. Захарова
2 Содержание (виды заданий В8) Найдите значение производной функции в точке х 0 по рисунку с изображенным графиком функции y = f(x) и касательной к нему в точке с абсциссой х 0. На рисунке изображен график функции y = f (x), касательная к этому графику, проведенная в точке х 0, проходит через начало координат. Найдите f'(х 0 ). На рисунке изображен график функции y = f (x), определенной на интервале ( a; b ). Определите количество целых точек, в которых производная функции отрицательна (положительна). На рисунке изображен график функции y = f (x), определенной на интервале (a; b). Найдите количество точек, в которых производная функции y = f (x) равна 0. На рисунке изображен график функции y = f (x), определенной на интервале (a; b). Найдите количество точек, в которых касательная к графику функции параллельна прямой у = с. На рисунке изображен график производной функции f (x), определенной на интервале (a; b). Найдите точку экстремума функции f (x). На рисунке изображен график производной функции y = f (x), определенной на интервале (x 1 ; x 2 ). Найдите количество точек максимума (минимума) функции y = f (x) на отрезке [a; b]. На рисунке изображен график производной функции f(x), определенной на интервале (x 1 ; x 2 ). Найдите промежутки возрастания (убывания) функции f(x). На рисунке изображен график производной функции f(x), определенной на интервале (x 1 ; x 2 ). Найдите абсциссу точки, в которой касательная к графику функции f(x) параллельна прямой y = kx + b или совпадает с ней
3 Задача 1.1. На рисунке изображен график функции y = f (x), и касательная к нему в точке с абсциссой х 0. Найдите значение производной функции y = f (x) в точке х 0. Значение производной функции f(x) в точке х 0 равно tga угловому коэффициенту касательной, проведенной к графику этой функции в данной точке. Чтобы найти угловой коэффициент, выберем две точки А и В, лежащие на касательной, абсциссы и ординаты которых целые числа. Теперь определим модуль углового коэффициента. Для этого построим ABC. Важно помнить, что тангенс острого угла прямоугольного треугольника это отношение противолежащего катета к прилежащему. Знак производной (углового коэффициента) можно определить по рисунку, например, так: если касательная «смотрит вверх» то производная положительна, если касательная «смотрит вниз» - отрицательна (если касательная горизонтальна, то производная равна нулю). Решение. АС Ответ: …… Теоретические сведения.
4 Задача 1.2. На рисунке изображен график функции y = f (x), и касательная к нему в точке с абсциссой х 0. Найдите значение производной функции y = f (x) в точке х 0. Решение. Ответ: ……..Ответ: …... a)б)б)
5 Задача 1.3. На рисунке изображен график функции y = f (x), и касательная к нему в точке с абсциссой х 0. Найдите значение производной функции y = f (x) в точке х 0. Решение. Ответ: …... a)б)б)
6 Задача 2.1. На рисунке изображен график функции y = f (x), касательная к этому графику, проведенная в точке 4, проходит через начало координат. Найдите f'(4). Решение. Если касательная проходит через начало координат, то можно изобразить ее на рисунке, проведя прямую через начало координат и точку касания. Ответ: …..
7 Задача 2.2. На рисунке изображен график функции y = f (x), касательная к этому графику, проведенная в точке х 0, проходит через начало координат. Найдите f'(х 0 ). х 0 = 2 х 0 = - 4 х 0 = Ответ: …...
8 Задача 3.1. На рисунке изображен график функции y = f (x), определенной на интервале (-8; 3). Определите количество целых точек, в которых производная функции отрицательна. Решим эту задачу, воспользовавшись следующим утверждением. Производная непрерывно дифференцируемой функции на промежутке убывания (возрастания) не положительна (не отрицательна). Значит необходимо выделить промежутки убывания функции и сосчитать количество целых чисел, принадлежащих этим промежуткам. Причем производная равна нулю на концах этих промежутков, значит, нужно брать только внутренние точки промежутков. Решение. Ответ: ….. Теоретические сведения.
9 Задача 3.2. На рисунке изображен график функции y = f (x), определенной на интервале (8; 5). Определите количество целых точек, в которых производная функции положительна. Решение. Ответ: …..
10 Задача 3.3. На рисунке изображен график функции y = f (x), определенной на интервале ( a;b ). Определите количество целых точек, в которых производная функции положительна. a)б)б) Решение. Ответ: …. Ответ: …...
11 Задача 3.4. На рисунке изображен график функции y = f (x), определенной на интервале ( a;b ). Определите количество целых точек, в которых производная функции отрицательна. a)б)б) Решение. Ответ: …. Ответ: …
12 Производная функции в точке х 0 равна 0 тогда и только тогда, когда касательная к графику функции, проведенная в точке с абсциссой х 0, горизонтальна. Отсюда следует простой способ решения задачи приложить линейку или край листа бумаги к рисунку сверху горизонтально и, двигая «вниз», сосчитать количество точек с горизонтальной касательной. Задача 4.1. На рисунке изображен график функции y = f (x), определенной на интервале (-6; 8). Найдите количество точек, в которых производная функции y = f (x) равна 0. Теоретические сведения. Решение. Ответ: …..
13 Задача 4.2. На рисунке изображен график функции y = f (x), определенной на интервале (a; b). Найдите количество точек, в которых производная функции y = f (x) равна 0. Решите устно! Ответ:
14 Задача 5.1. На рисунке изображен график функции y = f (x), определенной на интервале (-8; 3). Найдите количество точек, в которых касательная к графику функции параллельна прямой у = 8. Решение. Ответ: …...
15 Задача 5.2. На рисунке изображен график функции y = f (x), определенной на интервале (a; b). Найдите количество точек, в которых касательная к графику функции параллельна прямой у = с Решите устно! Ответ:.
16 Задача 6.1. На рисунке изображен график производной функции f (x), определенной на интервале (7; 5). Найдите точку экстремума функции f (x) на отрезке [-6; 4]. Решение. Ответ: ….. -3
17 Задача 6.2. На рисунке изображен график производной функции f (x), определенной на интервале (a; b). Найдите точку экстремума функции f (x) Ответ: ….. Ответ: …. Ответ:...
18 Решение. Ответ: …. Задача 7.1. На рисунке изображен график производной функции y = f (x), определенной на интервале (-3; 8). Найдите количество точек минимума функции y = f (x) на отрезке [-2; 7].
19 Задача 7.2. На рисунке изображен график производной функции y = f (x), определенной на интервале (x 1 ; x 2 ). Найдите количество точек максимума функции y = f (x) на отрезке [a; b]. Решение. Ответ:.... Ответ: ….. ab a b Решение. 1 2
20 Задача 7.3. На рисунке изображен график производной функции y = f (x), определенной на интервале (x 1 ; x 2 ). Найдите количество точек экстремума функции y = f (x) на отрезке [ -3; 10 ]. Ответ: …. 1 2
21 Задача 8.1. На рисунке изображен график производной функции y = f (x), определенной на интервале (-11; 3). Найдите промежутки возрастания функции f(x). В ответе укажите длину наибольшего из них. Решение. Ответ: …...
22 Задача 8.2. На рисунке изображен график производной функции f(x), определенной на интервале (x 1 ; x 2 ). Найдите промежутки убывания функции f(x). В ответе укажите длину наибольшего из них. 1 Решение. Ответ: ….. Ответ: …. 2
23 Задача 8.3. На рисунке изображен график производной функции f(x), определенной на интервале (x 1 ; x 2 ). Найдите промежутки возрастания функции f(x). В ответе укажите длину наименьшего из них. 1 Решение. Ответ: ….. Ответ: …… 2
24 Задача 9.1. На рисунке изображен график производной функции f(x), определенной на интервале (-11; 3). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y = 2x -5 или совпадает с ней. Решение. Ответ: …...
25 Задача 9.2. На рисунке изображен график производной функции f(x), определенной на интервале (x 1 ; x 2 ). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y = -2x + 7 или совпадает с ней. 1 Решение. Ответ: ….. Решение. Ответ: …... 2
26 Задача 9.3. На рисунке изображен график производной функции f(x), определенной на интервале (x 1 ; x 2 ). 1 Решение. Ответ: ….. Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y = 2x +10 или совпадает с ней. Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y = -3x+8 или совпадает с ней. Решение. Ответ: ….. 2
27 Задача 9.4. На рисунке изображен график производной функции f(x), определенной на интервале (x 1 ; x 2 ). Найдите абсциссу точки, в которой касательная к графику функции f(x) параллельна прямой y = 7 - 4x или совпадает с ней. Решение. Ответ: …... Решение. Ответ: …
28 Литература Для создания шаблона презентации использовалась картинка 05/ _2.jpg 05/ _2.jpg Ященко И.В., Захаров П.И. ЕГЭ Математика. Задача В8. Рабочая тетрадь / Под.ред. А.Л. Семенова и И.В. Ященко. – М.: МЦНМО, &goods=EducationalEdition&theme=standart
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.