Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 12 лет назад пользователемwww.chipinfo.ru
1 Фотоприемники Фотоприемники – полупроводниковые приборы, регистрирующие оптическое излучение и преобразующие оптический сигнал на входе в электрический сигнал на выходе фотодетектора. – полупроводниковые приборы, регистрирующие оптическое излучение и преобразующие оптический сигнал на входе в электрический сигнал на выходе фотодетектора.
2 Статистические параметры фотоприемников: Если на выходе фотоприемника изменяется ток, то фотоприемник характеризуется токовой чувствительностью Si. Токовая чувствительность – величина, характеризующая изменение тока, снимаемого с фотоприемника при единичном изменении мощности падающего оптического излучения: Если на выходе фотоприемника изменяется ток, то фотоприемник характеризуется токовой чувствительностью Si. Токовая чувствительность – величина, характеризующая изменение тока, снимаемого с фотоприемника при единичном изменении мощности падающего оптического излучения:
3 Если регистрируемый сигнал на выходе фотоприемника - напряжение, то вводят понятие вольтовая чувствительность – как величина, показывающая, на сколько изменится напряжение на выходе фотоприемника, при единичном изменении мощности падающего лучистого потока: Если регистрируемый сигнал на выходе фотоприемника - напряжение, то вводят понятие вольтовая чувствительность – как величина, показывающая, на сколько изменится напряжение на выходе фотоприемника, при единичном изменении мощности падающего лучистого потока:
4 К фотоприемникам относятся: Фотодиоды Фотодиоды Фоторезисторы Фоторезисторы Фототранзисторы Фототранзисторы P-I-N Фотодиоды P-I-N Фотодиоды и др. типы и др. типы
5 Процессы лежащие в основе действия фотоприемников: Генерация носителей под действием внешнего излучения. Генерация носителей под действием внешнего излучения. Перенос носителей и умножение за счет того или иного механизма, характерного для данного прибора. Перенос носителей и умножение за счет того или иного механизма, характерного для данного прибора. Взаимодействие тока с внешней цепью, обеспечивающее получение выходного сигнала. Взаимодействие тока с внешней цепью, обеспечивающее получение выходного сигнала.
6 Фотодетекторы должны обладать высокой чувствительностью и быстродействием высокой чувствительностью и быстродействием низким уровнем шумов низким уровнем шумов иметь малые размеры иметь малые размеры низкие управляющие напряжения и токи. низкие управляющие напряжения и токи.
7 Фотодиоды Принцип действия: под действием оптического излучения образуется электронно-дырочная пара и в области пространственного заряда p-n перехода резко возрастает обратный ток фотодиода. под действием оптического излучения образуется электронно-дырочная пара и в области пространственного заряда p-n перехода резко возрастает обратный ток фотодиода. Схема фотодиода:
8 Рассмотрим фотодиод на основе р-п перехода
9 ВАХ фотодиода I темн =I o (e ßVg - 1) I темн =I o (e ßVg - 1) Io = q*Lp*Pn o /t p + q*Ln*Np o /t n Io = q*Lp*Pn o /t p + q*Ln*Np o /t n
10 При освещении фотодиода происходит генерация электронно-дырочных пар. Во всем проводнике изменяется концентрация неосновных носителей, следовательно возрастает дрейфовая компонента тока, а диффузионная не меняется. При освещении фотодиода происходит генерация электронно-дырочных пар. Во всем проводнике изменяется концентрация неосновных носителей, следовательно возрастает дрейфовая компонента тока, а диффузионная не меняется. N,P>>Pn o,Np o N,P
11 Полный ток в фотодиоде I = I Ф + I темн I = I Ф + I темн Фототок от напряжения не зависит. Фототок от напряжения не зависит. Область поглощения светового потока должна принадлежать промежутку (-Lp,n;Lp,n) Область поглощения светового потока должна принадлежать промежутку (-Lp,n;Lp,n) ВАХ сдвигаются эквидистантно. ВАХ сдвигаются эквидистантно.
13 Расчет полного тока In - обусловлена равновесными и избыточными электронами в р-области Iг - обусловлена термо- и фотогенерацией электронно-дырочных пар в области пространственного заряда p-n перехода Iр - обусловлена дырками в n-области Iт - плотность темнового тока Iф - добавка за счет действия оптического излучения In - обусловлена равновесными и избыточными электронами в р-области Iг - обусловлена термо- и фотогенерацией электронно-дырочных пар в области пространственного заряда p-n перехода Iр - обусловлена дырками в n-области Iт - плотность темнового тока Iф - добавка за счет действия оптического излучения Вклад в In и Ip дают те носители, которые не рекомбинируют с основными носителями и достигают за счет диффузии p-n перехода. Вклад в In и Ip дают те носители, которые не рекомбинируют с основными носителями и достигают за счет диффузии p-n перехода.
14 Фоторезистор Фоторезистор - это пластина полупроводника, на противоположных концах которого расположены омические контакты. Фоторезистор - это пластина полупроводника, на противоположных концах которого расположены омические контакты. Схема фоторезистора: Схема фоторезистора:
15 Поток внутри полупроводника: Фо - падающий поток R - коэффициент отражения a - коэффициент поглощения Sф - площадь
16 Работа фоторезистора характеризуется: 1. Квантовой эффективностью (усиление) Поскольку концентрация изменяется по закону: Поскольку концентрация изменяется по закону: где T -время релаксации, то коэффициент усиления по току выражается: где T -время релаксации, то коэффициент усиления по току выражается:
17 2. Время фотоответа: зависит от времени пролета. Обычно у фоторезистора время ответа больше, чем у фотодиода, поскольку между контактами большое расстояние и слабое электрическое поле. 2. Время фотоответа: зависит от времени пролета. Обычно у фоторезистора время ответа больше, чем у фотодиода, поскольку между контактами большое расстояние и слабое электрическое поле. 3. Обнаружительная способность. 3. Обнаружительная способность.
18 P-I-N Фотодиод P-I-N Фотодиод построен на обычном p-i-n диоде. Эти приборы являются наиболее распространенными, так как толщину обедненной области можно сделать такой, что обеспечивается оптимальная квантовая эффективность и быстродействие. P-I-N Фотодиод построен на обычном p-i-n диоде. Эти приборы являются наиболее распространенными, так как толщину обедненной области можно сделать такой, что обеспечивается оптимальная квантовая эффективность и быстродействие.
19 Фототранзистор Фототранзистор дейсвует также как и остальные фотодетекторы, однако транзисторный эффект обеспечивает усиление фототока. По сравнению с фотодиодом фототранзистор более сложен в изготовлении и уступает ему в быстродействии (из-за большей площади). Фототранзистор дейсвует также как и остальные фотодетекторы, однако транзисторный эффект обеспечивает усиление фототока. По сравнению с фотодиодом фототранзистор более сложен в изготовлении и уступает ему в быстродействии (из-за большей площади).
20 Устройство и эквивалентная схема: Переход база - коллектор играет роль чувствительного элемента. На рисунке он показан в виде диода с параллельно включенной емкостью, имеет большую площадь Переход база - коллектор играет роль чувствительного элемента. На рисунке он показан в виде диода с параллельно включенной емкостью, имеет большую площадь
21 Фототранзистор особенно эффективен, так как обеспечивает высокий коэффициент преобразования по току(50% и более). В режиме работы с плавающей базой фотоносители дают вклад в ток коллектора в виде фототока Iph. Кроме того, дырки фотогенерируемые в базе, приходящие в базу из коллектора, уменьшают разность потенциалов между собой и эмиттером, что приводит к инжекции электронов через базу в коллектор. Фототранзистор особенно эффективен, так как обеспечивает высокий коэффициент преобразования по току(50% и более). В режиме работы с плавающей базой фотоносители дают вклад в ток коллектора в виде фототока Iph. Кроме того, дырки фотогенерируемые в базе, приходящие в базу из коллектора, уменьшают разность потенциалов между собой и эмиттером, что приводит к инжекции электронов через базу в коллектор. Общий ток: Общий ток:
22 Другие виды фотоприемников
23 На барьере Шоттки В области пространственного заряда диода с барьером Шоттки на основе полупроводника n-типа при обратном смещении генерируемые электронно - дырочные пары разделяются электрическим полем, и дырки выбрасываются в металлический контакт, а электроны - в базу. Так как ОПЗ имеет малую ширину и примыкает к светоприемной поверхности, то такие фотодиоды обладают высокой квантовой эффективностью и высоким коэффициентом поглощения в области малых длин волн. Оптическое излучение полностью поглощается в ОПЗ фотодиода. В области пространственного заряда диода с барьером Шоттки на основе полупроводника n-типа при обратном смещении генерируемые электронно - дырочные пары разделяются электрическим полем, и дырки выбрасываются в металлический контакт, а электроны - в базу. Так как ОПЗ имеет малую ширину и примыкает к светоприемной поверхности, то такие фотодиоды обладают высокой квантовой эффективностью и высоким коэффициентом поглощения в области малых длин волн. Оптическое излучение полностью поглощается в ОПЗ фотодиода.
24 На гетеропереходах Полупроводник с более широкой запрещенной зоной используется как окно, которое пропускает оптическое излучение с энергией, меньшей чем ширина запрещенной зоны без заметного поглощения. И тогда эффективность фотодиода будет зависеть только от того, на каком расстоянии расположен p-n переход от светоприемной поверхности. Полупроводник с более широкой запрещенной зоной используется как окно, которое пропускает оптическое излучение с энергией, меньшей чем ширина запрещенной зоны без заметного поглощения. И тогда эффективность фотодиода будет зависеть только от того, на каком расстоянии расположен p-n переход от светоприемной поверхности. Важно использовать гетеропереход с малой величиной обратного темнового тока, которую можно обеспечить, сводя к минимуму плотность граничных состояний, ответственных за появление, например, части тока, обусловленной фотогенерацией электронно-дырочных пар в ОПЗ p-n перехода. Это обеспечивается за счет согласования постоянных решеток обоих полупроводников Важно использовать гетеропереход с малой величиной обратного темнового тока, которую можно обеспечить, сводя к минимуму плотность граничных состояний, ответственных за появление, например, части тока, обусловленной фотогенерацией электронно-дырочных пар в ОПЗ p-n перехода. Это обеспечивается за счет согласования постоянных решеток обоих полупроводников
25 Лавинные фотодиоды На них подается обратное напряжение, достаточное для развития ударной ионизации в ОПЗ, то есть, сила фототока, квантовый выход и чувствительность возрастают в М раз (М - коффициент лавинного умножения). Преимущество заключается в том, что они имеют меньшее значение мощности, эквивалентной шуму. На них подается обратное напряжение, достаточное для развития ударной ионизации в ОПЗ, то есть, сила фототока, квантовый выход и чувствительность возрастают в М раз (М - коффициент лавинного умножения). Преимущество заключается в том, что они имеют меньшее значение мощности, эквивалентной шуму.
26 Выполнили: Кормоева Т.Г. Фадеева А.В.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.