Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 12 лет назад пользователемnataljasaz.webasyst.net
1 П резентация темы «решение задач с параметрами в итоговом повторении курса алгебры.» Разработано учителем математики гимназии 22 Захарьян А. А.
2 Оглавление 1) Предисловие 3 2) Занятие ) Занятие ) Занятие
3 Предисловие В последнее время в билетах вступительных экзаменов по математике, в ЕГЭ обязательно встречаются задачи с параметрами. Однако эта тема не входит в программу школьного курса за исключением классов с углублённым изучением математики. Существует мнение, что решение задачи с параметрами не выходит за пределы программы школьного курса математики. Имеется в виду, что если ученик или абитуриент владеет школьной программой, то он может самостоятельно, без специальной подготовки справится с задачей с параметрами. На самом деле решить задачу с параметрами может учащийся, который прошел специальную целенаправленную подготовку. Поэтому в школьной математике этим задачам должно уделяться внимание. В классах с углублённым изучением математики параметрам уделяется достаточно внимания, начиная с решения линейных уравнений. При изучении каждой темы «углублёнки» можно найти время для решения задач с параметрами. Чего нельзя сказать об общеобразовательных классах и классах с гуманитарным уклоном. Поэтому я предлагаю учителям, работающим в неспециализированных выпускных классах перед итоговым повторением уделить несколько часов решению задач с параметрами
4 Занятие 1 (2 часа) Главное, что должен усвоить школьник это то, что параметр – это число, хоть и неизвестное, но фиксированное, имеющее двойственную природу. После этих вступительных слов можно спросить у школьников встречались ли они с параметрами. Это линейная функция y=kx+b, где x и y – переменные, k и b – параметры; квадратное уравнение ax 2 +bx+c=0, где x - переменная a, b, c, - параметры. Задачи надо начинать решать с очень простых, постепенно усложняя их.
5 Пример 1. Сравнить –а и 5а Решение: 1) если а 0, 5a 5a 2) если а=0, то –а=0, 5а=0, значит –а=5а 3) если а>0, то –а 0, значит –а0, то–а
6 Пример 2. Решить уравнение ах=2 Решение: 1) если а=0, то 0х=2, решений нет 2) если а0, то х= Ответ: если а=0, то решений нет если а0, то х=
7 Пример 3 Решить уравнение (а 2 -9)х=а+3 Решение: 1) если а=3, то 0х=6, решений нет 2) если а=-3, то 0х=0, х 3) если а±3, то а 2 -90, Ответ: если а=3, то решений нет если а=-3, то x если а±3, то
8 Пример 4 Решить неравенство: ах0, то 2) если а0, то х< если а
9 Пример 5 Решить уравнение Решение: Ответ: если а=-3, то решений нет если а-3, то х=а.
10 Пример 6 Решить уравнение Решение: 1) если а=-1, то -2х+1+1=0; х=1 2) если а-1,то х=1 или Ответ: если а=-1, то х=1 если а-1,то х=1 или
11 Пример 7 Решить уравнение Решение: Ответ: если b-4, то x=b.
12 Пример 8 Решить уравнение Решение: 1) если а0, то х=1 2) если а=0, то x значит х=1 или х=-1 Ответ: если а0, то х=1 если а=0, то х=±1
13 Пример 9 Решить неравенство Решение: 1) a) если b=1, то б) если b=-1, то 2) если b±1, то неравенство квадратное
14 a)
15 б) учитывая, что при то Ответ: если b=1, то если b=-1, то если то
16 Рассмотренные выше задачи требовалось просто решить. В следующих задачах будет поставлено какое-то более «узкое», конкретное условие.
17 Пример 10 При каких а уравнение имеет единственное решение? Решение: 1) если а=0, то х=3 2) если а0, то уравнение квадратное и оно имеет единственное решение при D=0 D=1-12a Ответ: при а=0 или а=
18 Пример 11 При каких а уравнение имеет единственное решение? Решение: 1) если а=2, то решений нет 2) если а2, то уравнение имеет единственное решение при D=0 Ответ: при а=5
19 Задачи для самостоятельного домашнего решения задаются с ответами для самоконтроля 1)При каких а уравнение имеет решения, найти их при 2) Решить уравнение: a) (при а=1 или а=3 решений нет; при а1 и а3 х=а)
20 б) (при а=-2 решений нет; при а-2 х=2) 3) При каких а уравнение имеет ровно три корня (при )
21 Занятие 2 (2 часа) Урок начинается с разбора домашнего задания. Затем учитель предлагает решить более общую задачу.
22 Пример 12 Выяснить, при каких значениях параметра а уравнение имеет: 1 ) два различных корня; 2) не более одного корня; 3) два корня различных знаков; 4) два положительных корня.
23 Решение: 1) уравнение имеет два различных корня тогда и только тогда, когда оно квадратное и D>0. 2) а) если а=4, то б)
24 3) уравнение имеет два корня различных знаков тогда и только тогда, когда значит 4) уравнение имеет два положительных корня тогда и только тогда, когда
25 Самостоятельная работа. Вариант I 1. Для всякого а решить уравнение Решение: Т.к. сумма коэффициентов равна 0, то х=1 или х=2а Ответ: 1; 2а. 2. При каких b уравнение имеет единственный корень? Для каждого b найти этот корень. Решение: Квадратное уравнение имеет единственный корень тогда и только тогда, когда D=0
26 1) если b=12, то 2) если b=-12, то Ответ: при b=12 x=-2 при b=-12 x=2.
27 3. Для каждого значения параметра решить неравенство: Решение: Решим неравенство методом интервалов, рассмотрев функцию f(x)=, непрерывную на R, имеющую нули 2, -2, b Рассмотрим три случая: 1)
28 2) -2
29 Вариант II Задания аналогичны заданиям варианта I. 1. Ответ: -1; 3а. 2. Ответ: при b=20 x=-2 при b=-20 x=2. 3. Ответ: если то если -1
30 Занятие 3 (2 часа) Теперь можно приступать к решению задач ЕГЭ с параметрами.
31 Пример 1. Найти все значения параметра p, при которых уравнение имеет хотя бы один корень. Решение: Рассмотрим функцию f(a)= определённую на [-1;0)U(0;1] и найдём её область значений. f(-1)=11; f(1)=3; при f (a)=
32 f (a)=0 Т.к. то экстремумов у функции нет, следовательно E(f)=(0;11]. Чтобы уравнение а значит и данное уравнение имело хотя бы один корень, необходимо и достаточно, чтобы Ответ:
33 Пример 2. Найти все значения а, при которых область определения функции содержит ровно одно двузначное натуральное число. Решение: D(y): Решим первое неравенство системы:
34 1) если 0
35 2) если а>1, то Чтобы решение удовлетворяло условию задачи, необходимо и достаточно, чтобы Ответ:
36 Пример 3. Найти все значения параметра а, при каждом из которых множество решений неравенства содержит какой-нибудь отрезок длиной 2,но не содержит никакого отрезка длиной 3 Решение:
37 Решим неравенство методом интервалов, рассмотрев функцию непрерывную на R\{0}, имеющую нули 4, а: 1) если - решение содержит отрезок длиной 3, что не удовлетворяет условию задачи. 2) если 0
38 т.е. 3) если - аналогично случаю 1) Ответ:
39 Пример 4. Найти все значения параметра p, при которых уравнение имеет хотя бы один корень, и число различных корней этого уравнения равно числу различных корней уравнения Решение: 1) Пусть =t, тогда
40 Рассмотрим функцию D(f)=[0; ), f(t)=0 t=0. E(f)=(- ;0] f(t)= f(t)
41 2) Узнаем при каких p уравнение имеет ровно один корень: а) если 2p+3=0 ( ), то -удовлетворяет условию. б) если то уравнение имеет единственный корень при D=0. D=0 Итак, уравнение имеет ровно один корень при
42 Но уравнению удовлетворяют только т.е. при и p=-1 уравнения и имеют равное число корней, а именно, по одному. Ответ: ; -1
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.