Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 12 лет назад пользователемwikikurgan.orbitel.ru
1 Симметрия в нашей жизни Геометрия Симметрия в нашей жизни Геометрия
2 научить распознавать симметричные фигуры среди других; познакомить учащихся с использованием симметрии в природе, быту, искусстве, технике; развивать умения анализировать и сравнивать предметы; ЗАДАЧИ:
3 Симметричность точек относительно прямойСимметричность точек относительно прямой Симметричность фигуры относительно прямойСимметричность фигуры относительно прямой Симметричность точек относительно точкиСимметричность точек относительно точки Симметричность фигуры относительно точкиСимметричность фигуры относительно точки Симметрия вокруг насСимметрия вокруг нас Математики о симметрииМатематики о симметрии
4 Симметрия (от греческого symmetria - «соразмерность») - понятие, означающее сохраняемость, повторяемость, «инвариантность» каких-либо особенностей структуры изучаемого объекта при проведении с ним определенных преобразований». СИММЕТРИЯ
5 Трансляционная симметрия Центральная симметрия Осевая симметрия Зеркальная симметрия Поворот Параллельный перенос Скользящая симметрия
6 Определение Две точки А и А 1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА 1 и перпендикулярна к нему Задание Постройте точку C 1, симметричную точке C относительно прямой а A1A1 A a O B A A1A A1 a Т AO = OA 1 C1C1 a C
7 Определение Фигура называется симметричной относительно прямой, если для каждой точки фигуры симметричная ей точка также принадлежит этой фигуре Фигура называется симметричной относительно прямой, если для каждой точки фигуры симметричная ей точка также принадлежит этой фигуре А D B C M K N P ab c
8 Какие из данных фигур имеют ось симметрии? Сколько?
9 Определение Точки A и A 1 называются симметричными относительно точки О, если О – середина отрезка AA 1 Точки A и A 1 называются симметричными относительно точки О, если О – середина отрезка AA 1Задание Постройте отрезок A 1 B 1, симметричный отрезку AB относительно точки О Постройте отрезок A 1 B 1, симметричный отрезку AB относительно точки О A O A B B1B1 O A1A1 A1A1
10 Определение Фигура называется симметричной относительно точки, если для каждой точки фигуры симметричная ей точка также принадлежит этой фигуре. Фигура называется симметричной относительно точки, если для каждой точки фигуры симметричная ей точка также принадлежит этой фигуре. Какие из данных фигур имеют центр симметрии? A B C D O
13 Нетрадиционные виды симметрии Винтовая симметрия Симметрия поворота Переносная симметрия
14 Винтовая симметрия
15 Переносная симметрия или скользящее преобразование
16 Симметрия поворота
19 Часто такую симметрию называют зеркальной. А зеркало не просто копирует объект, но и меняет местами передние и задние части объекта по отношению к зеркалу. Дубаи Башни Эмиратов Соловецкий монастырь Германия Гамбург
21 Симметрия танца
22 Симметрия в литературе Палиндром - это абсолютное проявление симметрии в литературе. Например: «А луна канула», «А роза упала на лапу Азора». Палиндром В.Набокова: Я ел мясо лося, млея... Рвал Эол алоэ, лавр. Те ему: "Ишь! И умеет Рвать!" Он им: "Я - минотавр!" Он им: "Я - минотавр!" назад
24 Математик любит прежде всего симметрию Максвелл Д. Максвелл Д. Красота тесно связана с симметрией Вейль Г. Вейль Г. Симметрия … является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство Вейль Г. Вейль Г. Для человеческого разума симметрия обладает, по - видимому, совершенно особой притягательной силой Фейнман Р. Фейнман Р.
25 Заключение Симметрия играет огромную роль в искусстве: в архитектуре, в музыке, в поэзии; природе: у растений и животных; в технике, в быту. Симметрия играет огромную роль в искусстве: в архитектуре, в музыке, в поэзии; природе: у растений и животных; в технике, в быту.
26 Ответьте на вопросы: С каким понятием мы сегодня познакомились? Какие виды симметрии вы запомнили? Что нового вы узнали?
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.