Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 12 лет назад пользователемwww.wiki.vladimir.i-edu.ru
1 ЗОЛОТОЕ СЕЧЕНИЕ
2 История золотого сечения Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор
3 Золотое сечение в математике Ряд чисел 0,1,1,2,3,5,8,13,21,34,55 и т.д. известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый её член, начиная с третьего, равен сумме двух предыдущих = 5; = 8; =13; =21; = 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21 : 34 = 0,617, а 34 : 55 = 0,618. Это отношение обозначается символом Ф. Только это отношение - 0,618 : 0,382 – дает непрерывное деление отрезка прямой в золотой пропорции, увеличение его или уменьшение до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему Ряд чисел 0,1,1,2,3,5,8,13,21,34,55 и т.д. известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый её член, начиная с третьего, равен сумме двух предыдущих = 5; = 8; =13; =21; = 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21 : 34 = 0,617, а 34 : 55 = 0,618. Это отношение обозначается символом Ф. Только это отношение - 0,618 : 0,382 – дает непрерывное деление отрезка прямой в золотой пропорции, увеличение его или уменьшение до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему
4 Золотой прямоугольник Золотой прямоугольник обладает многими интересными свойствами. Если, например, от золотого прямоугольника АВСD отрезать квадрат со стороной, равной меньшей стороне прямоугольника, то снова получим золотой прямоугольник EFCD и т.д.Золотой прямоугольник обладает многими интересными свойствами. Если, например, от золотого прямоугольника АВСD отрезать квадрат со стороной, равной меньшей стороне прямоугольника, то снова получим золотой прямоугольник EFCD и т.д.
5 Золотое сечение в природе Рассматривая расположение листьев на стебле растений можно заметить, что между каждыми двумя парами листьев (А и С) третья расположена в месте золотого сечения (В).Рассматривая расположение листьев на стебле растений можно заметить, что между каждыми двумя парами листьев (А и С) третья расположена в месте золотого сечения (В). Если первый отросток принять за 100 единиц, то второй равен 62 единицам, третий – 38, четвертый – 24 и т.д. Длина лепестков тоже подчинена золотой пропорцииЕсли первый отросток принять за 100 единиц, то второй равен 62 единицам, третий – 38, четвертый – 24 и т.д. Длина лепестков тоже подчинена золотой пропорции
6 Золотое сечение в теле человека Золотое сечение заложено в пропорциях человеческого тела. Золотое сечение заложено в пропорциях человеческого тела. Примером является статуя Зевса Олимпийского Примером является статуя Зевса Олимпийского (одно из семи чудес света)
7 Золотая пропорция в человеческом теле
8 Золотое сечение в фотографии На протяжении многих веков, для построения гармоничных композиций художника пользуются понятием «Золотого сечения». На основе данного правила существуют различные способы построения гармоничных композиций, в том числе и в фотографии. Примером использования правила «Золотого сечения» может быть расположение основных компонентов кадра в особых точках – зрительных центрах. Таких точек всего четыре, и расположены они на расстоянии 3/8 и 5/8 от соответствующих краев плоскости. Человек всегда акцентирует свое внимание на этих точках, независимо от формата кадра или картины.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.