Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 12 лет назад пользователемwww.gumchtenia.rggu.ru
1 Логические средства когнитивной социологии М.А. Михеенкова, В.К. Финн
2 Когнитивная социология Результат взаимодействия идей классической социологии и современных методов интеллектуального анализа данных Результат взаимодействия идей классической социологии и современных методов интеллектуального анализа данных Получение нового знания на основе анализа эмпирических социологических данных Получение нового знания на основе анализа эмпирических социологических данных Обоснованная теория (grounded theory) (B.Glaser, A. Strauss) – построение теории на основе эмпирических фактов с использованием индуктивного анализа, причем сбор информации происходит вплоть до насыщения выборки Обоснованная теория (grounded theory) (B.Glaser, A. Strauss) – построение теории на основе эмпирических фактов с использованием индуктивного анализа, причем сбор информации происходит вплоть до насыщения выборки
3 Интеллектуальный анализ социологических данных Решение задач качественного АСД средствами Интеллектуального анализа данных (knowledge discovery vs. data mining) Извлечение интерпретируемых зависимостей между различными факторами, неявно содержащимися в массивах данных ИАД: Обнаружение нового (относительно имеющихся БФ и БЗ) знания, извлеченного из БФ и БЗ посредством ИС ИС – конструктивная имитация (возможно, лишь до некоторой степени) познавательных способностей человека (В.К. Финн. Искусственный интеллект: методология, применения, философия. – М.: URSS, 2010 (в печати)) Существенно: наличие нечисловых параметров
4 Интеллектуальный анализ социологических данных Задачи: первичная структурация данных и знаний, формирование системы отношений (социум), выбор адекватных средств анализа, порождение новых отношений Задачи: первичная структурация данных и знаний, формирование системы отношений (социум), выбор адекватных средств анализа, порождение новых отношений (измерение – отображение системы отношений в числовые характеристики) Согласование качественного анализа и количественных характеристик Согласование качественного анализа и количественных характеристик Причинная обусловленность – предрасположенность к совершению поведенческих актов при отсутствии противодействующих влияний Причинная обусловленность – предрасположенность к совершению поведенческих актов при отсутствии противодействующих влияний Принцип: «сходство объектов (субъектов) порождает наличие эффекта и его повторяемость, а не наоборот» Принцип: «сходство объектов (субъектов) порождает наличие эффекта и его повторяемость, а не наоборот» (тип каузальности «структура – эффект»)
5 Качественный анализ социологических данных Qualitative Comparative Analysis (C.C. Ragin) – использование булевой алгебры для анализа причин социальных явлений. Причины – интерпретируемые комбинации качественных характеристик. Расширение (fsQCA) – использование теории нечетких множеств. Qualitative Comparative Analysis (C.C. Ragin) – использование булевой алгебры для анализа причин социальных явлений. Причины – интерпретируемые комбинации качественных характеристик. Расширение (fsQCA) – использование теории нечетких множеств. Формализованный – средствами интеллектуального анализа данных Формализованный – средствами интеллектуального анализа данных
6 Задачи интеллектуального анализа социологических данных исследование индивидуального поведения (сравнение, типологизация) исследование индивидуального поведения (сравнение, типологизация) обнаружение детерминант поведения обнаружение детерминант поведения предсказание поведения предсказание поведения учет влияния ситуации учет влияния ситуации распознавание рациональности мнений (в т.ч. степени рациональности мнений данной социальной общности) и отклонений от нее распознавание рациональности мнений (в т.ч. степени рациональности мнений данной социальной общности) и отклонений от нее Рациональность – обобщенная целе-ценностная рациональность (М. Вебер) как аргументированное принятие решений
7 Интеллектуальные системы (ИС) ИС = Решатель (задач) + [База фактов (БФ) + База знаний (БЗ)] + комфортный интерфейс Решатель = Рассуждатель + Вычислитель + Синтезатор ИС – компьютерная система описанной архитектуры, имитирующая способности естественного интеллекта: в автоматическом режиме – рассуждение, аргументация, рефлексия, обучение, объяснение; в интерактивном режиме – уточнение идей до понятий, адаптация, коррекция знаний и поведения. Рассуждатель: индукция, аналогия, абдукция, дедукция – синтез познавательных процедур, реализующий различные классы эвристик решения задач.
8 ДСМ-метод автоматического порождения гипотез и логика ИС Условия применимости Условия применимости ДСМ-рассуждения ДСМ-рассуждения Квазиаксиоматические теории (для баз знаний) Квазиаксиоматические теории (для баз знаний) Дедуктивная имитация правдоподобных рассуждений Дедуктивная имитация правдоподобных рассуждений Интеллектуальные системы типа ДСМ Интеллектуальные системы типа ДСМ
9 Анализ социологических данных средствами ДСМ-ИС Построение формального языка для структурации данных и аргументации Построение формального языка для структурации данных и аргументации Порождение отношений «причина-следствие» ( 2 ) и «следствие- причина» ( 3 ) из исходного отношения «объект-свойство» ( 1 ) (индуктивный вывод) Порождение отношений «причина-следствие» ( 2 ) и «следствие- причина» ( 3 ) из исходного отношения «объект-свойство» ( 1 ) (индуктивный вывод) Модификация БФ и прогнозирование отношения 1 посредством выводов по аналогии Модификация БФ и прогнозирование отношения 1 посредством выводов по аналогии Абдуктивное объяснение начального состояния БФ и управление ею Абдуктивное объяснение начального состояния БФ и управление ею Анализ рациональности мнений Анализ рациональности мнений Построение квазиаксиоматической теории (открытой) КАТ для анализа социологических данных, систематизирующей факты и знания о социуме Построение квазиаксиоматической теории (открытой) КАТ для анализа социологических данных, систематизирующей факты и знания о социуме
10 Формализация m-значного закрытого опроса Т – тема опроса Т – тема опроса P = {p 1, …, p n } – каркас темы Т P = {p 1, …, p n } – каркас темы Т J m – m-значная логика, ИЭФ-J m и ИЭФ*-J m J m – m-значная логика, ИЭФ-J m и ИЭФ*-J m V m = {0, 1/(m–1),…, (m–2)/(m–1), 1} – множество оценок переменных V m = {0, 1/(m–1),…, (m–2)/(m–1), 1} – множество оценок переменных Заданы атомарные оценки v (i) [p j ] = j (i), i = 1, …, m n, j = 1, …, n Заданы атомарные оценки v (i) [p j ] = j (i), i = 1, …, m n, j = 1, …, n Задана функция оценки квазиформул и формул ИЭФ-J m и ИЭФ*-J m Задана функция оценки квазиформул и формул ИЭФ-J m и ИЭФ*-J m ?p i – вопрос «какова оценка корня вопроса p i ?», V m, ответ – J p j ?p i – вопрос «какова оценка корня вопроса p i ?», V m, ответ – J p j Ответ респондента b i по теме Т – J m -максимальная конъюнкция C i J 1(i) p 1 &...& J n(i) p n, i = 1, …, m n, …, r. Ответ респондента b i по теме Т – J m -максимальная конъюнкция C i J 1(i) p 1 &...& J n(i) p n, i = 1, …, m n, …, r.
11 Формализация m-значного закрытого опроса О m = J m, Р,, K, R, где J m – m-значная логика (m 3), Р = {p 1, …, p n } – каркас темы опроса Т, = { 1, …, s } –логические зависимости между элементами каркаса, формулы логики J m, = { 1, …, s } –логические зависимости между элементами каркаса, формулы логики J m, K – стабилизированное множество ответов, K K, K – множество всех возможных ответов, | K |= m n R = {b 1, …, b r } – множество респондентов (соответствующее K ) R = {X | J, 0 (X 1 [ ])& K } ([ ] = {J 1 p 1,..., J n p n };, 1, …, n V m )
12 Аргументация А – множество доводов (аргументов и контраргументов) А – множество доводов (аргументов и контраргументов) Эмпирические оценки – функции g j + : P 2 A, g j + (p i ) А g j + : P 2 A, g j + (p i ) А g j – : P 2 A, g j – (p i ) А, g j – : P 2 A, g j – (p i ) А, i = 1, …, n, j = 1, …, r (r = | R |), g j – индивидуальные функции выбора аргументации, {+, –} i = 1, …, n, j = 1, …, r (r = | R |), g j – индивидуальные функции выбора аргументации, {+, –} G + = {g 1 +, …, g r + }, G + = {g 1 +, …, g r + }, G – = {g 1 –, …, g r – }. G – = {g 1 –, …, g r – }. О m а = J m, Р,, K, R, А, G +, G – – m-значный опрос с аргументационной семантикой О m а = J m, Р,, K, R, А, G +, G – – m-значный опрос с аргументационной семантикой Цель – понимание рациональности мнений
13 Аргументация A, g + (p i ) g – (p i ) =, g (p i ) A, {+, –} A, g + (p i ) g – (p i ) =, g (p i ) A, {+, –} Атомарная оценка: v[p i ] = 1 g + (p i ), g – (p i ) = ; v[p i ] = 1 g + (p i ), g – (p i ) = ; v[p i ] = –1 g + (p i ) =, g – (p i ) ; v[p i ] = –1 g + (p i ) =, g – (p i ) ; v[p i ] = 0 g + (p i ), g – (p i ) ; v[p i ] = 0 g + (p i ), g – (p i ) ; v[p i ] = g + (p i ) = g – (p i ) = ; v[p i ] = g + (p i ) = g – (p i ) = ; Аргументационная семантика возможна и для m=2, 3
14 Логика JA 4 Логика JA 4 – логика распознавания рациональности v[J 1 p]=t g + (p) и g (p)= v[J 1 p]=t g + (p) и g (p)= v[J 1 p]=t g + (p)= и g (p) v[J 1 p]=t g + (p)= и g (p) v[J 0 p]=t g + (p) и g (p) v[J 0 p]=t g + (p) и g (p) v[J p]=t g + (p)=g (p)= v[J p]=t g + (p)=g (p)= (частный случай m-значной логики)
15 Двухуровневый m,l-значный опрос Оценки относительно элементов Р и темы Т формируются независимо Оценки относительно элементов Р и темы Т формируются независимо опрос для каркаса – «внутренний» – m-значный; соответственно, используется логика J m, опрос для каркаса – «внутренний» – m-значный; соответственно, используется логика J m, опрос по теме – «внешний» – l-значный; логика J l. опрос по теме – «внешний» – l-значный; логика J l. Опрос определяется расширенно: O m, l = J m, J l, Р,, K, R. Опрос определяется расширенно: O m, l = J m, J l, Р,, K, R. R = {X | J, 0 (X 1 [ ])& K } ([ ] = {J 1 p 1,..., J n p n }; V l, 1, …, n V m ). O m, l а = O m, l, А, G +, G – – m, l-значный опрос с аргументационной семантикой
16 Непротиворечивость m-значного опроса Ответы респондентов j = J 1(j) p 1 &...& J n(j) p n – J-максимальные конъюнкции логики J m Ответы респондентов j = J 1(j) p 1 &...& J n(j) p n – J-максимальные конъюнкции логики J m consis( { }) – метапредикат непротиворечивости множества формул ( { }) (метод аналитических таблиц) consis( { }) – метапредикат непротиворечивости множества формул ( { }) (метод аналитических таблиц) К + = { |consis( { }) ( К)} – множество всех, не противоречащих К + = { |consis( { }) ( К)} – множество всех, не противоречащих = { | consis( { }) ( К)} – множество ответов, противоречащих (множество запрещенных максимальных конъюнкций относительно ). = { | consis( { }) ( К)} – множество ответов, противоречащих (множество запрещенных максимальных конъюнкций относительно ).
17 Критерии рациональности опроса Степень непротиворечивости опроса Критерии рациональности опроса Степень непротиворечивости опроса | K | = r, функция ( K, ) = 1 – (| K |/| K |) есть степень непротиворечивости опроса соответствующего множества респондентов. | K | = r, функция ( K, ) = 1 – (| K |/| K |) есть степень непротиворечивости опроса соответствующего множества респондентов. Если K =, то опрос непротиворечив ( = 1); Если K =, то опрос непротиворечив ( = 1); если K, – противоречив ( = 0); если K, – противоречив ( = 0); если K и ( K ), то 0< < 1 если K и ( K ), то 0< < 1 K –стабилизированное множество ответов – множество запрещенных максимальных конъюнкций – множество запрещенных максимальных конъюнкций
18 Критерии рациональности опроса Близость к «идеальному мнению» Критерии рациональности опроса Близость к «идеальному мнению» i-я партия, «идеальное партийное мнение» j = J 1 p 1 &...& J n p n ; i-я партия, «идеальное партийное мнение» j = J 1 p 1 &...& J n p n ; (i) k – число респондентов с (n – k) пересечений с идеальным мнением j (сходство в (n – k) пунктах программы, (i) k – число сходств), (i) – число сторонников i-й партии при опросе; (i) k – число респондентов с (n – k) пересечений с идеальным мнением j (сходство в (n – k) пунктах программы, (i) k – число сходств), (i) – число сторонников i-й партии при опросе; p (i) = (i) 0 n + (i) 1 (n – 1) + … + (i) k (n – k) + … + (i) (n-1) 1 p (i) = (i) 0 n + (i) 1 (n – 1) + … + (i) k (n – k) + … + (i) (n-1) 1 (i) = p (i) /n (i) (i) = p (i) /n (i)
19 Критерии рациональности опроса «Степень согласованности» Критерии рациональности опроса «Степень согласованности» Для фиксированной темы Т* (сторонники одной партии) Для фиксированной темы Т* (сторонники одной партии) Множество мнений Ф = { 1,…, s } Множество мнений Ф = { 1,…, s } Множество респондентов, имеющих мнение j : B j = {X| J 1, 0 (X 1 [ j ], T* }. Множество респондентов, имеющих мнение j : B j = {X| J 1, 0 (X 1 [ j ], T* }. Число респондентов, имеющих мнение j : |B j | = j, j = 1, …, s. Число респондентов, имеющих мнение j : |B j | = j, j = 1, …, s. [ i ] [ j ] = [ ij ], j = i+1, …, s, |[ ij ]| = m ij, [ i ] [ j ] = [ ij ], j = i+1, …, s, |[ ij ]| = m ij, ij = min( i, j ). ij = min( i, j ). j = ( j1 m j1 + … + js m is ), = ( 1 +…+ s-1 ), j = ( j1 m j1 + … + js m is ), = ( 1 +…+ s-1 ), = (n-1) j (s-j), j = 1, …, s-1. = (n-1) j (s-j), j = 1, …, s-1. Степень согласованности = /. Степень согласованности = /.
20 Задача изучения мнений Исходные элементы БФ J,0 (C j 1 [ j ]) – «субъект C j имеет мнение j » Гипотезы J,n ([ j ] 3 C j ) – «мнение j есть следствие характеристик субъекта C j » (n>0) Гипотезы J,n ([ j ] 3 C j ) – «мнение j есть следствие характеристик субъекта C j » (n>0), n – истинностное значение (оценка), полученная применением ДСМ-метода АПГ, где { 1, 0, }, а n – число применений ДСМ- правил правдоподобного вывода, n – истинностное значение (оценка), полученная применением ДСМ-метода АПГ, где { 1, 0, }, а n – число применений ДСМ- правил правдоподобного вывода
21 Изучение электорального поведения Анализ и предсказание электоральных предпочтений студентов старших курсов РГГУ накануне декабрьских (2003, 2007 гг.) выборов в Государственную Думу описание респондента («портрет личности») мнение (выбор партийных программных установок) + выбор электорального действия (конкретная партия, другие партии, против всех, неучастие в выборах): С i 1 [ i ], Т j * описание респондента («портрет личности») мнение (выбор партийных программных установок) + выбор электорального действия (конкретная партия, другие партии, против всех, неучастие в выборах): С i 1 [ i ], Т j *
22 Эксперимент порождение детерминант электорального поведения мнение, выбор действия, где «мнение» есть выбор программных установок (без указания в исходных данных их принадлежности конкретной партии), а «действие» – выбор одной из шести заданных партий или другой, или выбор «против всех» или отказ от участия в выборах; где «мнение» есть выбор программных установок (без указания в исходных данных их принадлежности конкретной партии), а «действие» – выбор одной из шести заданных партий или другой, или выбор «против всех» или отказ от участия в выборах; при этом (–)-примерами для каждого действия (демонстрации партийных предпочтений) оказываются голосующие за все другие партии. при этом (–)-примерами для каждого действия (демонстрации партийных предпочтений) оказываются голосующие за все другие партии.
23 Формирование мнения p 1, …, p n – программные установки (по проблемам «земля», «приватизация», «СМИ», «внешняя политика», «экономика», «свобода личности», «социальная политика» и.т.п.) р 57 : «Земля всецело должна быть в государственной собственности» (КПРФ) р 61 : «Социальная рыночная экономика наиболее эффективна в условиях России» (Яблоко) р 68 : «Необходимо узаконить итоги приватизации» (СПС) р 85 : «Основная угроза России исходит от США» (ЛДПР) Мнение – ответы на предложенные вопросы с соответствующими оценками (из множества {1, –1, 0, })
24 Эксперимент Анализ рациональности выбора программных установок и электорального действия (выбора политической партии в том числе).
25 Рациональность 57) Земля всецело должна быть в государственной собственности. 67) Продажа земли в частные руки должна быть строго ограниченной. 84) Земля должна постепенно приватизироваться, но при условии строгого соблюдения законности. 88) Необходима свободная без ограничений продажа сельскохозяйственных угодий. J 1 p 57 J – 1 p 88 J 1 p 57 J – 1 p 88 J – 1 p 57 J 1 p 88 J – 1 p 57 J 1 p 88 J 1 p 57 J – 1 p 84 J 1 p 57 J – 1 p 84 J 1 p 67 J – 1 p 88 J 1 p 67 J – 1 p 88
26 Рациональность (непротиворечивость) ВсегоПротивор.Непротив. Степень непротив. Все респонден ,199 СПС272160,222 Против всех ,211 ЛДПР5410,2 Яблоко272250,185 Другое11920,182 Ед.Рос ,095 КПРФ5500 Народ. пар. 6600
27 Рациональность (3 критерия) (2003) КПРФЕдиная РоссияСПС ЯблокоЛДПР Народная Партия R = R,, R =,,, R (i) R (j) (( (i) (j) )&( (i) (j) )&( (i) (j) ))
28 Рациональность (2 критерия) (2003) Всего Близость к идеальному мнению Близость к идеальному мнению Степень согласованности Степень согласованности Ед. Россия 210,6800,625 СПС250,5710,598 КПРФ50,7000,540 Яблоко250,5330,472 ЛДПР50,3500,329 Нар. партия 50,2330,240 КПРФ Ед. Россия СПС Яблоко ЛДПР Нар. парт.
29 Рациональность (2 критерия) (2007) Всего Близость к идеальном у мнению Близость к идеальном у мнению Степень согласованности Степень согласованности СПС140,6730,559 Яблоко170,4120,447 Гражд. сила 40,5710,444 ЛДПР80,50,441 Ед. Россия ,4070,406 КПРФ80,4290,351 Справ. Россия 30,3330,333 СПС Гражд. силаЯблоко ЛДПР КПРФ Ед. Россия Справ. Россия
30 Предсказательный опрос Расширение базы фактов БФ на основе абдуктивного объяснения Расширение базы фактов БФ на основе абдуктивного объяснения Пополнение БЗ доопределенными примерами отношения Пополнение БЗ доопределенными примерами отношения K – стабилизированное множество ответов по завершении вычислений, K = K K *, где K * - множество доопределенных ответов. Предсказание ответов Предсказание ответов Определение степени рациональности опроса (по трем критериям) Определение степени рациональности опроса (по трем критериям) Определение существенности параметров опроса (элементов P) Определение существенности параметров опроса (элементов P)
31 Предсказательный опрос O 4, – предсказательный опрос, V in ( ) = {, n |( { 1, 0, })&(n N)} O 4, – предсказательный опрос, V in ( ) = {, n |( { 1, 0, })&(n N)} X ((X B*) (J, 0 (X 1 [ ])&( K))) X ((X B*) (J, 0 (X 1 [ ])&( K))) Ǩ = K \K' Ǩ = K \K' K,n * = { | XJ, n (X 1 [ ])&(X B*)& ( { 1, 0, })&(n 1)} K,n * = { | XJ, n (X 1 [ ])&(X B*)& ( { 1, 0, })&(n 1)} K n * = K 1,n * K –1,n * K 0,n * K,n * K n * = K 1,n * K –1,n * K 0,n * K,n * Ǩ n * = K n * Ǩ – множество предсказанных мнений Ǩ n * = K n * Ǩ – множество предсказанных мнений (К, К + ) = | Ǩ n * К |/|К + | – (рациональная) полнота предсказания (К, К + ) = | Ǩ n * К |/|К + | – (рациональная) полнота предсказания
32 Задачи Предсказание ответов – любая реализация эвристической схемы Предсказание ответов – любая реализация эвристической схемы Определение степени непротиворечивости опроса Определение степени непротиворечивости опроса Определение существенности параметров опроса (элементов P) Определение существенности параметров опроса (элементов P)
33 Т. Парсонс «О теории и метатеории» (Теоретическая социология, Антология, Т.2, с. 44 – 45) «Во-первых, Вебер определял социологию как научную дисциплину, которая, в первую очередь, должна попытаться понять действия индивидов, особенно в их социальных отношениях. …Во-вторых, Вебер считал, что социология помимо субъективных мотивов должна развивать каузальные объяснения процесса действия, его направления и последствий».
34 ИАД как инструмент когнитивной социологии Анализ данных – предсказание – объяснение – (новая проблема) (язык представления знаний с аргументативной и дескриптивной функцией) Сходство – аналогия – абдукция: алгебра логики – аналогия – абдукция, AlAnAb (ср. Ragin C.C.) (закрытый мир); алгебра логики – аналогия – абдукция, AlAnAb (ср. Ragin C.C.) (закрытый мир); индукция – аналогия – абдукция, InAnAb (ср. ДСМ-метод АПГ) (открытый ми и обучение). индукция – аналогия – абдукция, InAnAb (ср. ДСМ-метод АПГ) (открытый ми и обучение).
35 Когнитивная социология – Когнитивная социология – условия применимости (онтология для социологических данных) + эпистемология (ИАД для социологических данных) Формализованные средства – ДСМ-метод АПГ и соответствующие ему логики Формализованные средства – ДСМ-метод АПГ и соответствующие ему логики Инструмент анализа – интеллектуальные системы типа ДСМ (ИС-ДСМ). Инструмент анализа – интеллектуальные системы типа ДСМ (ИС-ДСМ).
36 Когнитивная социология – взаимодействие идей классической социологии и возможностей ИАД Когнитивная социология – взаимодействие идей классической социологии и возможностей ИАД Ответ на вызов качественной социологии (потребность в формализации КАД) Ответ на вызов качественной социологии (потребность в формализации КАД) Когнитивная социология vs. Социальная философия и статистические вычисления Когнитивная социология vs. Социальная философия и статистические вычисления
37 Некоторые публикации Страусс А., Корбин Дж. Основы качественного исследования. Обоснованная теория. Процедуры и техники. М.: КомКнига. – Страусс А., Корбин Дж. Основы качественного исследования. Обоснованная теория. Процедуры и техники. М.: КомКнига. – Ядов В.А. Стратегия социологического исследования. М.: Добросвет, Ядов В.А. Стратегия социологического исследования. М.: Добросвет, Ragin C.C. The Comparative Method: Moving beyond Qualitative and Quantitative Strategies // Berkley, Los Angeles and London: University of California Press, Ragin C.C. The Comparative Method: Moving beyond Qualitative and Quantitative Strategies // Berkley, Los Angeles and London: University of California Press, Rihoux B. Qualitative Comparative Analysis and Related Systematic Comparative Methods // International Sociology, v. 21 (5), September Rihoux B. Qualitative Comparative Analysis and Related Systematic Comparative Methods // International Sociology, v. 21 (5), September Финн В.К. Интеллектуальные системы и общество. Изд. 3-е. М.: КомКнига, Финн В.К. Интеллектуальные системы и общество. Изд. 3-е. М.: КомКнига, Автоматическое порождение гипотез в интеллектуальных системах, М.: Книжный дом «Либроком», 2009, Введение, Гл.1, Гл.4; Часть III. Автоматическое порождение гипотез в интеллектуальных системах, М.: Книжный дом «Либроком», 2009, Введение, Гл.1, Гл.4; Часть III.
Еще похожие презентации в нашем архиве:
© 2025 MyShared Inc.
All rights reserved.