Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 12 лет назад пользователемschool.baltinform.ru
1 ПРЕЗЕНТАЦИЯ УЧЕНИЦЫ 5 Б КЛАССА ЗАДИРАЕВОЙ ЮЛИИ МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ЛИЦЕЙ 10
3 Древнейшие древнеегипетские математические тексты относятся к началу II тысячелетия до н. э. Математика тогда использовалась в астрономии, мореплавании, землемерии, при строительстве домов, плотин, каналов и военных укреплений. Денежных расчётов, как и самих денег, в Египте не было. Египтяне писали на папирусе, который сохраняется плохо, и поэтому в настоящее время знаний о математике Египта существенно меньше, чем о математике Вавилона или Греции. Вероятно, она была развита лучше, чем можно представить, исходя из дошедших до нас документов, что подтверждается тем, что греческие математики учились у египтян.Основные сохранившиеся источники: папирус Ахмеса, он же папирус Ринда (84 математические задачи), и Древнейшие древнеегипетские математические тексты относятся к началу II тысячелетия до н. э. Математика тогда использовалась в астрономии, мореплавании, землемерии, при строительстве домов, плотин, каналов и военных укреплений. Денежных расчётов, как и самих денег, в Египте не было. Египтяне писали на папирусе, который сохраняется плохо, и поэтому в настоящее время знаний о математике Египта существенно меньше, чем о математике Вавилона или Греции. Вероятно, она была развита лучше, чем можно представить, исходя из дошедших до нас документов, что подтверждается тем, что греческие математики учились у египтян.Основные сохранившиеся источники: папирус Ахмеса, он же папирус Ринда (84 математические задачи), и папирус Голенищева (25 задач), оба из Среднего царства, времени расцвета древнеегипетской культуры. Авторы текста нам неизвестны. папирус Голенищева (25 задач), оба из Среднего царства, времени расцвета древнеегипетской культуры. Авторы текста нам неизвестны. Египетские числа
5 Вавилоняне писали клинописными значками на глиняных табличках, которые в немалом количестве дошли до наших дней (более , из них около 400 связаны с математикой). Поэтому мы имеем довольно полное представление о математических достижениях учёных Вавилонского государства. Отметим, что корни культуры вавилонян были в значительной степени унаследованы от шумеров клинописное письмо, счётная методика и т. п. Вавилоняне писали клинописными значками на глиняных табличках, которые в немалом количестве дошли до наших дней (более , из них около 400 связаны с математикой). Поэтому мы имеем довольно полное представление о математических достижениях учёных Вавилонского государства. Отметим, что корни культуры вавилонян были в значительной степени унаследованы от шумеров клинописное письмо, счётная методика и т. п.клинописнымиВавилонского государствашумеров клинописное письмоклинописнымиВавилонского государствашумеров клинописное письмо Вавилонская расчётная техника была намного совершеннее египетской, а круг решаемых задач существенно шире. Есть задачи на решение уравнений второй степени, геометрические прогрессии. При решении применялись пропорции, средние арифметические, проценты. Методы работы с прогрессиями были глубже, чем у египтян. Линейные и квадратные уравнения решались ещё в эпоху Хаммурапи; при этом использовалась геометрическая терминология (произведение ab называлось площадью, abc объёмом, и т. д.). Вавилонская расчётная техника была намного совершеннее египетской, а круг решаемых задач существенно шире. Есть задачи на решение уравнений второй степени, геометрические прогрессии. При решении применялись пропорции, средние арифметические, проценты. Методы работы с прогрессиями были глубже, чем у египтян. Линейные и квадратные уравнения решались ещё в эпоху Хаммурапи; при этом использовалась геометрическая терминология (произведение ab называлось площадью, abc объёмом, и т. д.).египетскойгеометрические прогрессии пропорциипрогрессиямиегиптянХаммурапиегипетскойгеометрические прогрессии пропорциипрогрессиямиегиптянХаммурапи Вавилонские цифры
7 Цифры в древнем Китае обозначались специальными иероглифами, которые появились во II тысячелетии до н. э., и начертание их окончательно установилось к III веку до н. э. Эти иероглифы применяются и в настоящее время. Китайский способ записи чисел изначально был мультипликативным. Например, запись числа 1946, используя вместо иероглифов римские цифры, можно условно представить как 1М9С4Х6. Однако на практике расчёты выполнялись на счётной доске, где запись чисел была иной позиционной, как в Индии, и, в отличие от вавилонян, десятичной. Цифры в древнем Китае обозначались специальными иероглифами, которые появились во II тысячелетии до н. э., и начертание их окончательно установилось к III веку до н. э. Эти иероглифы применяются и в настоящее время. Китайский способ записи чисел изначально был мультипликативным. Например, запись числа 1946, используя вместо иероглифов римские цифры, можно условно представить как 1М9С4Х6. Однако на практике расчёты выполнялись на счётной доске, где запись чисел была иной позиционной, как в Индии, и, в отличие от вавилонян, десятичной. Вычисления производились на специальной счётной доске суаньпань (см. на фотографии), по принципу использования аналогичной русским счётам. Нуль сначала обозначался пустым местом, специальный иероглиф появился около XII века н. э. Для запоминания таблицы умножения существовала специальная песня, которую ученики заучивали наизусть. Вычисления производились на специальной счётной доске суаньпань (см. на фотографии), по принципу использования аналогичной русским счётам. Нуль сначала обозначался пустым местом, специальный иероглиф появился около XII века н. э. Для запоминания таблицы умножения существовала специальная песня, которую ученики заучивали наизусть. Наиболее содержательное математическое сочинение древнего Китая «Математика в девяти книгах». Наиболее содержательное математическое сочинение древнего Китая «Математика в девяти книгах». Был даже разработан метод фан-чэн для решения систем произвольного числа линейных уравнений аналог классического европейского метода Гаусса. Был даже разработан метод фан-чэн для решения систем произвольного числа линейных уравнений аналог классического европейского метода Гаусса. Китайские (вверху) и японские счёты
8 Рафаэль Санти «Афинская школа» Муза геометрии (Лувр)
9 Математика в современном понимании этого слова родилась в Греции. В странах-современниках Эллады математика использовалась либо для обыденных нужд (подсчёты, измерения), либо, наоборот, для магических ритуалов, имевших целью выяснить волю богов (астрология, нумерология и т. п.). Математической теории в полном смысле этого слова не было, дело ограничивалось сводом эмпирических правил, часто неточных или даже ошибочных. Математика в современном понимании этого слова родилась в Греции. В странах-современниках Эллады математика использовалась либо для обыденных нужд (подсчёты, измерения), либо, наоборот, для магических ритуалов, имевших целью выяснить волю богов (астрология, нумерология и т. п.). Математической теории в полном смысле этого слова не было, дело ограничивалось сводом эмпирических правил, часто неточных или даже ошибочных. Греки подошли к делу с другой стороны. Греки подошли к делу с другой стороны. Во-первых, пифагорейская школа выдвинула тезис «Числа правят миром».Или, как сформулировали эту же мысль два тысячелетия спустя: «Природа разговаривает с нами на языке математики» (Галилей). Это означало, что истины математики есть в известном смысле истины реального бытия. Во-первых, пифагорейская школа выдвинула тезис «Числа правят миром».Или, как сформулировали эту же мысль два тысячелетия спустя: «Природа разговаривает с нами на языке математики» (Галилей). Это означало, что истины математики есть в известном смысле истины реального бытия. Во-вторых, для открытия таких истин пифагорейцы разработали законченную методологию. Сначала они составили список первичных, интуитивно очевидных математических истин (аксиомы, постулаты). Затем с помощью логических рассуждений (правила которых также постепенно унифицировались) из этих истин выводились новые утверждения, которые также обязаны быть истинными. Так появилась дедуктивная математика. Во-вторых, для открытия таких истин пифагорейцы разработали законченную методологию. Сначала они составили список первичных, интуитивно очевидных математических истин (аксиомы, постулаты). Затем с помощью логических рассуждений (правила которых также постепенно унифицировались) из этих истин выводились новые утверждения, которые также обязаны быть истинными. Так появилась дедуктивная математика.
11 Около 500 г. н. э. неизвестный нам великий индийский математик изобрёл новую систему записи чисел десятичную позиционную систему. В ней выполнение арифметических действий оказалось неизмеримо проще, чем в старых, с неуклюжими буквенными кодами, как у греков, или шестидесятиричных, как у вавилонян. В дальнейшем индийцы использовали счётные доски, приспособленные к позиционной записи. Они разработали полные алгоритмы всех арифметических операций, включая извлечение квадратных и кубических корней. Около 500 г. н. э. неизвестный нам великий индийский математик изобрёл новую систему записи чисел десятичную позиционную систему. В ней выполнение арифметических действий оказалось неизмеримо проще, чем в старых, с неуклюжими буквенными кодами, как у греков, или шестидесятиричных, как у вавилонян. В дальнейшем индийцы использовали счётные доски, приспособленные к позиционной записи. Они разработали полные алгоритмы всех арифметических операций, включая извлечение квадратных и кубических корней. К VVI векам относятся труды Ариабхаты, выдающегося индийского математика и астронома. В его труде «Ариабхатиам» встречается множество решений вычислительных задач. В VII веке работал другой известный индийский математик и астроном, Брахмагупта. К VVI векам относятся труды Ариабхаты, выдающегося индийского математика и астронома. В его труде «Ариабхатиам» встречается множество решений вычислительных задач. В VII веке работал другой известный индийский математик и астроном, Брахмагупта. АРИАБХАТА
12 МАТЕМАТИКИ XVI ВЕКА, средневековая миниатюра
13 XVI век стал переломным для европейской математики. Полностью усвоив достижения предшественников, она несколькими мощными рывками вырвалась далеко вперёд. XVI век стал переломным для европейской математики. Полностью усвоив достижения предшественников, она несколькими мощными рывками вырвалась далеко вперёд. Великое открытие XVI века изобретение логарифмов (Джон Непер).Сложные расчёты упростились во много раз, а математика получила новую неклассическую функцию с широкой областью применения. В 1585 году фламандец Симон Стевин издаёт книгу «Десятая» о правилах действий с десятичными дробями, после чего десятичная система одерживает окончательную победу и в области дробных чисел. Стевин также провозгласил полное равноправие рациональных и иррациональных чисел, а также (с некоторыми оговорками) и отрицательных чисел. Одновременно растёт престиж математики, в изобилии появляется множество практических задач, требующих решения в артиллерии, мореплавании, строительстве, промышленности, гидравлике, астрономии, картографии, оптике и др. И, в отличие от античности, учёные Возрождения не чурались таких задач. Чистых математиков-теоретиков фактически не было. Появляются первые Академии наук. В XVIXVII веках роль университетской науки падает, появляется множество учёных-непрофессионалов: Стевин военный инженер, Виет и Ферма юристы, Дезарг и архитекторы, Лейбниц чиновник, Непер, Декарт, Паскаль частные лица. ДЖОН НЕПЕР
15 В XVII веке быстрое развитие математики продолжается, и к концу века облик науки коренным образом меняется. В XVII веке быстрое развитие математики продолжается, и к концу века облик науки коренным образом меняется. Рене Декарт исправляет стратегическую ошибку античных математиков и восстанавливает алгебраическое понимание числа (вместо геометрического). Более того, он указывает способ перевода геометрических предложений на алгебраический язык (с помощью системы координат), после чего исследование становится намного эффективнее. Так родилась аналитическая геометрия. Декарт рассмотрел множество примеров, иллюстрирующих огромную мощь нового метода, и получил немало результатов, неизвестных древним. Особо следует отметить разработанную им математическую символику, близкую к современной. Рене Декарт исправляет стратегическую ошибку античных математиков и восстанавливает алгебраическое понимание числа (вместо геометрического). Более того, он указывает способ перевода геометрических предложений на алгебраический язык (с помощью системы координат), после чего исследование становится намного эффективнее. Так родилась аналитическая геометрия. Декарт рассмотрел множество примеров, иллюстрирующих огромную мощь нового метода, и получил немало результатов, неизвестных древним. Особо следует отметить разработанную им математическую символику, близкую к современной. И, наконец, появляется не очень чёткая, но глубокая идея анализ произвольных гладких кривых с помощью разложения их на бесконечно малые отрезки прямых. Первой реализацией этой идеи был во многом несовершенный метод неделимых (Кеплер, Кавальери, Ферма), и уже с его помощью было сделано множество новых открытий. В конце XVII века идея неделимых была существенно расширена Ньютоном и Лейбницем, и появился исключительно могучий инструмент исследования математический анализ. Это математическое направление стало основным в следующем, XVIII веке. Сэр Исаак Ньютон
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.