Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 12 лет назад пользователемleaks.do.am
1 Электрический ток в металлах Надежда Далецкая 11а
2 Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда. Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда.
3 Опыт Э.Рикке В этих опытах электрический ток пропускали в течении года через три прижатых друг к другу, хорошо отшлифованных цилиндра - медный, алюминевый и снова медный. Общий заряд, прошедший за это время через цилиндры, был очень велик (около 3,5*106 Кл). После окончания было установлено, что имеются лишь незначительные следы взаимного проникновения металлов, которые не превышают результатов обычной диффузии атомов в твёрдых телах. Измерения, проведённые с высокой степенью точности, показали, что масса каждого из цилиндров осталась неизменной. Поскольку массы атомов меди и алюминия существенно отличаются друг от друга, то масса цилиндров должна была бы заметно измениться, если бы носителями заряда были ионы. В этих опытах электрический ток пропускали в течении года через три прижатых друг к другу, хорошо отшлифованных цилиндра - медный, алюминевый и снова медный. Общий заряд, прошедший за это время через цилиндры, был очень велик (около 3,5*106 Кл). После окончания было установлено, что имеются лишь незначительные следы взаимного проникновения металлов, которые не превышают результатов обычной диффузии атомов в твёрдых телах. Измерения, проведённые с высокой степенью точности, показали, что масса каждого из цилиндров осталась неизменной. Поскольку массы атомов меди и алюминия существенно отличаются друг от друга, то масса цилиндров должна была бы заметно измениться, если бы носителями заряда были ионы. Следовательно, свободными носителями заряда в металлах являются не ионы. Огромный заряд, который прошёл через цилиндры, был перенесён, очевидно, такими частицами, которые одинаковы и в меди, и в алюминии. Как известно, такие частицы входят в состав атомов всех веществ - это электроны. Естественно предположить, что ток в металлах осуществляют именно свободные электроны. Следовательно, свободными носителями заряда в металлах являются не ионы. Огромный заряд, который прошёл через цилиндры, был перенесён, очевидно, такими частицами, которые одинаковы и в меди, и в алюминии. Как известно, такие частицы входят в состав атомов всех веществ - это электроны. Естественно предположить, что ток в металлах осуществляют именно свободные электроны.
4 Опыт Т.Стюарта и Р.Толмена Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру Г. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра. Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру Г. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра.
5 Т.Стюарт и Р.Толмен определили экспериментально удельный заряд частиц. Он оказался равным Т.Стюарт и Р.Толмен определили экспериментально удельный заряд частиц. Он оказался равным
6 В начале 20 века немецкий физик П. Друде и голландский физик Х.Лоренц создали классическую теорию электропроводности металлов. В начале 20 века немецкий физик П. Друде и голландский физик Х.Лоренц создали классическую теорию электропроводности металлов.
7 Основные положения теории: 1. Хорошая проводимость металлов объясняется наличием в них большого числа электронов. 2. Под действием внешнего электрического поля на беспорядочное движение электронов накладывается упорядоченное движение, т.е. возникает ток.
8 3. Сила электрического, тока идущего по металлическому проводнику равна:
9 4. Так как внутреннее строение у разных веществ различное, то и сопротивление тоже будет различным. 4. Так как внутреннее строение у разных веществ различное, то и сопротивление тоже будет различным. 5. При увеличении хаотического движения частиц вещества происходит нагревание тела, т.е. выделение тепла. Закон Джоуля-Ленца: 5. При увеличении хаотического движения частиц вещества происходит нагревание тела, т.е. выделение тепла. Закон Джоуля-Ленца:
10 6. У всех металлов с увеличением температуры растет и сопротивление. 6. У всех металлов с увеличением температуры растет и сопротивление. где a - температурный коэффициент; – удельное сопротивление и сопротивление металлического проводника; и R – удельное сопротивление проводника и сопротивление проводника при температуре t. где a - температурный коэффициент; – удельное сопротивление и сопротивление металлического проводника; и R – удельное сопротивление проводника и сопротивление проводника при температуре t.
11 Сверхпроводимость металлов и сплавов У многих металлов и сплавов при температурах, близких с T=0 К, наблюдается резкое уменьшение удельного сопротивления – это явление называется сверхпроводимостью металлов. У многих металлов и сплавов при температурах, близких с T=0 К, наблюдается резкое уменьшение удельного сопротивления – это явление называется сверхпроводимостью металлов. Оно было обнаружено голландским физиком Х.Камерлингом – Онессом в 1911 году у ртути ( Т кр =4,2 о К ). Т P 0
12 Теория сверхпроводимости была создана лишь в 1957 году американцами Л.Купером, Дж. Бардином и Дж. Шриффером. Они считали, что сверх проводимость – это сверхтекучесть электронной жидкости. Теория сверхпроводимости была создана лишь в 1957 году американцами Л.Купером, Дж. Бардином и Дж. Шриффером. Они считали, что сверх проводимость – это сверхтекучесть электронной жидкости.
13 Область применения: получение сильных магнитных полей; получение сильных магнитных полей; мощные электромагниты со сверхпроводящей обмоткой в ускорителях и генераторах. мощные электромагниты со сверхпроводящей обмоткой в ускорителях и генераторах. В настоящий момент в энергетике существует большая проблема В настоящий момент в энергетике существует большая проблема - большие потери электроэнергии при передаче ее по проводам. - большие потери электроэнергии при передаче ее по проводам. Возможное решение проблемы: Возможное решение проблемы: при сверхпроводимости сопротивление проводников приблизительно равно 0 при сверхпроводимости сопротивление проводников приблизительно равно 0 и потери энергии резко уменьшаются. и потери энергии резко уменьшаются.
14 Общие сведения Свойством сверхпроводимости обладают около половины металлов и несколько сотен сплавов. Свойством сверхпроводимости обладают около половины металлов и несколько сотен сплавов. Сверхпроводящие свойства зависят от типа кристаллической структуры. Изменение её может перевести вещество из обычного в сверхпроводящее состояние. Сверхпроводящие свойства зависят от типа кристаллической структуры. Изменение её может перевести вещество из обычного в сверхпроводящее состояние. Критические температуры изотопов элементов, переходящих в сверхпроводящее состояние, связаны с массами изотопов соотношением: Критические температуры изотопов элементов, переходящих в сверхпроводящее состояние, связаны с массами изотопов соотношением: Т э (М э ) 1/2 = const (изотопический эффект) Т э (М э ) 1/2 = const (изотопический эффект) Сильное магнитное поле разрушает эффект сверхпроводимости. Следовательно, при помещении в магнитное поле свойство сверхпроводимости может исчезнуть.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.