Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 12 лет назад пользователемheiko51.narod.ru
1 Шар ( сфера ) Сферическая поверхность. Шар (сфера). Сечения шара: круги. Теорема Архимеда. Части шара: шаровой (сферический) сегмент, шаровой слой, шаровой пояс, шаровой сектор.
2 Сферическая поверхность это геометрическое место точек ( т.е. множество всех точек ) в пространстве, равноудалённых от одной точки O, которая называется центром сферической поверхности ( рис.90 ). Радиус AO и диаметр AB определяются так же, как и в окружности.
3 Шар ( сфера ) - это тело, ограниченное сферической поверхностью. Можно получить шар, вращая полукруг ( или круг ) вокруг диаметра. Все плоские сечения шара – круги ( рис.90 ). Наибольший круг лежит в сечении, проходящем через центр шара, и называется большим кругом. Его радиус равен радиусу шара. Любые два больших круга пересекаются по диаметру шара ( AB, рис.91 ). Этот диаметр является и диаметром пересекающихся больших кругов. Через две точки сферической поверхности, расположенные на концах одного диаметра ( A и B, рис.91 ), можно провести бесчисленное множество больших кругов. Например, через полюса Земли можно провести бесконечное число меридианов.
4 Объём шара в полтора раза меньше объёма описанного вокруг него цилиндра ( рис.92 ), а поверхность шара в полтора раза меньше полной поверхности того же цилиндра ( теорема Архимеда ): Здесь S шара и V шара - соответственно поверхность и объём шара; S цил и V цил - полная поверхность и объём описанного цилиндра
5 Части шара Часть шара ( сферы ), отсекаемая от него какой- либо плоскостью ( ABC, рис.93 ), называется шаровым ( сферическим ) сегментом. Круг ABC называется основанием шарового сегмента. Отрезок MN перпендикуляра, проведенного из центра N круга ABC до пересечения со сферической поверхностью, называется высотой шарового сегмента. Точка M называется вершиной шарового сегмента. Часть сферы, заключённая между двумя параллельными плоскостями ABC и DEF, пересекающими сферическую поверхность ( рис.93 ), называется шаровым слоем; кривая поверхность шарового слоя называется шаровым поясом ( зоной ). Круги ABC и DEF – основания шарового пояса. Расстояние NK между основаниями шарового пояса – его высота. Часть шара, ограниченная кривой поверхностью сферического сегмента ( AMCB, рис.93 ) и конической поверхностью OABC, основанием которой служит основание сегмента ( ABC ), а вершиной – центр шара O, называется шаровым сектором.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.