Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 5 лет назад пользователемСултан Тургазыев
1 Тема: «Трансгенные организмы, применение в фармации и медицине» ВЫПОЛНИЛ: Т Ұ Р Ғ АЗЫЕВ С.Б. ПРОВЕРИЛА: МИРОЕДОВА Э.П.
2 План. Введение. Основная часть Трансгенные организмы Этапы создания трансгенных организмов. Примеры трансгенных организмов. Заключение Литература
3 Введение Генная инженерия совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами, введения их в другие организмы и выращивания искусственных организмов после удаления выбранных генов из ДНК. Генная инженерия служит для получения желаемых качеств изменяемого или генетически модифицированного организма.
4 Трансгенные организмы Трансгенный организм живой организм, в геном которого искусственно либо природой введен ген, который не может быть приобретен при естественном скрещивании.
5 Первоначально под трансгенными организмами подразумевались любые организмы, в геном которых были при помощи методов генной инженерии введены отсутствующие там гены, однако в настоящее время организмы, в геном которых были введены гены организмов, одного с ними вида или видов, с которыми они скрещиваются в естественных условиях называются Цисгенными - введен ген с «собственными» регуляторными участками Интрагенными - введен ген с регуляторными участками других генов.
6 Ген вводится в геном хозяина в форме так называемой «генетической конструкции» последовательности ДНК, несущей участок, кодирующий белок, и регуляторные элементы (промотор, энхансер и пр.), а также в некоторых случаях элементы, обеспечивающие специфическое встраивание в геном (например, т. н. «липкие концы»). Генетическая конструкция может нести несколько генов, часто она представляет собой бактериальную плазмиду или её фрагмент. Целью создания трансгенных организмов является получение организма с новыми свойствами. Клетки трансгенного организма производят белок, ген которого был внедрен в геном. Новый белок могут производить все клетки организма (неспецифическая экспрессия нового гена), либо определенные клеточные типы (специфическая экспрессия нового гена).
7 Создание трансгенных организмов используют: в научном эксперименте для развития технологии создания трансгенных организмов, для изучения роли определенных генов и белков, для изучения многих биологических процессов; огромное значение в научном эксперименте получили трансгенные организмы с маркерными генами (продукты этих генов с легкостью определяются приборами, например, зелёный флуоресцентный белок визуализируют с помощью микроскопа, так легко можно определить происхождение клеток, их судьбу в организме и т. д.); в сельском хозяйстве для получения новых сортов растений и пород животных;в биотехнологическом производстве плазмид и белков.
8 В настоящее время получено большое количество штаммов трансгенных бактерий, линий трансгенных животных и растений. Близко по смыслу и значению к трансгенным организмам находятся трансгенные клеточные культуры. Ключевым этапом в технологии создания трансгенных организмов является трансфекция внедрение ДНК в клетки будущего трансгенного организма. В настоящее время разработано большое количество методов трансфекции. Близко по значению к термину «трансгенный организм» стоит термин «трансфицированный организм» организм, в клетки которого был осуществлен перенос гена другого организма. Этот термин иногда используют, когда акт трансфекции осуществлен, но экспрессия нового гена отсутствует. Близко по значению к термину «трансгенный организм» стоит термин «Генетически модифицированный организм», однако последнее понятие шире и включает в себя не только трансгенные организмы, но и организмы с любыми искусственными изменениями генома.
9 Этапы создания трансгенных организмов Для начала нужно с совершенной точностью определить «донорский» ген, который заставит новый организм выполнять несвойственные ему до момента «операции» функции. Затем следует определить его аминокислотную последовательность, «вычислить» по ней последовательность нуклеотидов в соответствующем гене (это опять-таки непросто: одну аминокислоту могут кодировать несколько сочетаний нуклеотидов)и, наконец, найти нужный ген. Теперь его надо вырезать и встроить в другую молекулу ДНК, способную обеспечить жизнеспособность «переселенца» в чужеродном окружении.
10 При положительном результате подобных манипуляций в клетке начинает синтезироваться новый белок, что и приводит к появлению у организма новых свойств. Вот, собственно, и все основы генной инженерии.
11 Примеры трансгенных организмов Светящиеся в темноте коты В 2007 году южнокорейский ученый изменил ДНК кота, чтобы заставить его светиться в темноте, а затем взял эту ДНК и клонировал из нее других котов, создав целую группу пушистых флуоресцирующих кошачьих. И вот, как он это сделал: исследователь взял кожные клетки мужских особей турецкой ангоры и, используя вирус, ввел генетические инструкции по производству красного флуоресцентного белка. Затем он поместил генетически измененные ядра в яйцеклетки для клонирования, и эмбрионы были имплантированы назад донорским котам, что сделало их суррогатными матерями для собственных клонов.
12 Эко-свинья Эко-свинья, или как критики ее еще называют Франкенсвин - это свинья, которая была генетически изменена для лучшего переваривания и переработки фосфора. Свиной навоз богат формой фосфора фиатом, а потому, когда фермеры используют его как удобрение, это химическое вещество попадает в водосборы и становится причиной цветения водорослей, которые, в свою очередь, уничтожают кислород в воде и убивают водную жизнь. Ученые добавили бактерию E. Coli и ДНК мыши в эмбрион свиньи. Это изменение уменьшило производство фосфора свиньей ни много, ни мало на 70%, что сделало ее более экологически чистой.
13 Борющиеся с загрязнениями растения Ученые Вашингтонского университета работают над созданием тополей, которые могут очищать загрязненные места при помощи впитывания через корневую систему загрязняющих веществ, содержащихся в подземных водах. После этого растения разлагают загрязнители на безвредные побочные продукты, которые впитываются корнями, стволом и листьями или высвобождаются в воздух. В лабораторных испытаниях трансгенные растения удаляют ни много, ни мало 91% трихлорэтилена из жидкого раствора, химического вещества, являющегося самым распространенным загрязнителем подземных вод.
14 Плетущие паутину козы Крепкий и гибкий паутинный шелк является одним из самых ценных материалов в природе, его можно было бы использовать для производства целого ряда изделий от искусственных волокон до парашютных строп, если бы была возможность производства в коммерческих объемах. В 2000 году компания «Nexia Biotechnologies» заявила, что имеет решение: коза, производящая в своем молоке паутинный белок паука. Исследователи вложили ген каркасной нити паутины в ДНК козы таким образом, чтобы животное стало производить паутинный белок только в своем молоке. Это «шелковое молоко» затем можно использовать для производства паутинного материала под названием «Биосталь».
15 Банановые вакцины Вскоре люди смогут получать вакцину от гепатита Б и холеры, просто укусив банан. Исследователи успешно создали бананы, картофель, салат-латук, морковь и табак для производства вакцин, но, по их словам, идеальными для этой цели оказались именно бананы. Когда измененная форма вируса вводится в молодое банановое дерево, его генетический материал быстро становится постоянной частью клеток растения. С ростом дерева его клетки производят вирусные белки, но не инфекционную часть вируса. Когда люди съедают кусок генетически созданного банана, заполненного вирусными белками, их иммунная система создает антитела для борьбы с болезнью; то же происходит и с обычной вакциной.
16 Генетически модифицированные деревья Деревья изменяются генетически для более быстрого роста, лучшей древесины и даже для обнаружения биологических атак. Сторонники генетически созданных деревьев говорят, что биотехнологии могут помочь остановить обезлесение и удовлетворить потребности в древесине и бумаге. Например, австралийское эвкалиптовое дерево изменено для устойчивости к низким температурам, была создана ладанная сосна с меньшим содержанием лигнина – вещества, дающего деревьям твердость. В 2003 году Пентагон даже наградил создателей сосны, меняющей цвет во время биологической или химической атаки. Однако критики заявляют, что знаний о том, как созданные деревья влияют на природное окружение, еще недостаточно; среди иных недостатков они могут распространять гены на природные деревья или увеличивать риск воспламенения.
17 Лекарственные яйца Британские ученые создали породу генетически модифицированных кур, которые производят в яйцах лекарства против рака. Животным добавили в ДНК гены людей, и, таким образом, человеческие белки секретируются в белок яиц вместе со сложными лекарственными белками, схожими с препаратами, используемыми для лечения рака кожи и других заболеваний. Что же именно содержится в этих борющихся с болезнями яйцах? Куры несут яйца с miR24 – молекулой, способной лечить злокачественные опухоли и артрит, а также с человеческим интерфероном b-1a – антивирусным лекарством, схожим на современные препараты от множественного склероза.
18 Активно связывающие углерод растения Ежегодно люди добавляют около девяти гига тонн углерода в атмосферу, а растения впитывают около пяти из этого количества. Оставшийся углерод способствует парниковому эффекту и глобальному потеплению, но ученые работают над созданием генетически модифицированных растений для улавливания этих остатков углерода. Углерод может в течение десятилетий оставаться в листьях, ветвях, семенах и цветах растений, а тот, что попадает в корни, может быть там столетия. Таким образом, исследователи надеются создать биоэнергетические культуры с обширной корневой системой, которые смогут связывать и сохранять углерод под землей. Ученые в настоящее время работают над генетическим модифицированием многолетних растений, как просо прутьевидное и мискант, что связано с их большими корневыми системами.
19 Заключение Технологии получения ГМО позволяют значительно расширить возможности традиционной селекции. Более того, с помощью новой технологии можно получать такие организмы, которые в принципе нельзя получить, используя обычную селекцию. Она делает возможным решение проблем борьбы с болезнями, голодом, которые считались ранее практически неразрешимыми.
20 Литература
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.