Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 6 лет назад пользователемCherry Berry
1 История развития вычислительной техники Выполнила Белугина Марина ученица 10А класса
2 Начальный этап развития вычислительной техники Все началось с идеи научить машину считать или хотя бы складывать многоразрядные целые числа. Еще около 1500 г. великий деятель эпохи Просвещения Леонардо да Винчи разработал эскиз 13-разрядного суммирующего устройства, что явилось первой дошедшей до нас попыткой решить указанную задачу. Первую же действующую суммирующую машину построил в 1642 г. Блез Паскаль – знаменитый французский физик, математик, инженер. Его 8-разрядная машина сохранилась до наших дней.
3 «Арифметический прибор» Через 30 лет после "Паскалины" в 1673 г. появился "арифметический прибор" Готфрида Вильгельма Лейбница - двенадцатиразрядное десятичное устройство для выполнения арифметических операций, включая умножение и деление.
4 В конце XVIII века во Франции произошли два события, имеющие принципиальное значение для дальнейшего развития цифровой вычислительной техники. К таким событиям относятся: Изобретение Жозефом Жаккардом программного управления ткацким станком с помощью перфокарт; Разработка Гаспаром де Прони, технологии вычислений, разделившей численные вычисления на три этапа: разработка численного метода, составление программы последовательности арифметических действий, проведение собственно вычислений путем арифметических операций над числами в соответствии с составленной программой.
5 Аналитическая машина Указанные новшества позже были использованы англичанином Чарльзом Беббиджем, осуществившим, качественно новый шаг в развитии средств ВТ – переход от ручного к автоматическому выполнению вычислений по составленной программе. Им был разработан проект Аналитической машины - механической универсальной цифровой вычислительной машины с программным управлением ( гг.). Машина состояла из пяти устройств: арифметическое (АУ); запоминающее (ЗУ); управления (УУ); ввода (УВВ); вывода (УВ). В 1870 г. английский математик Джевонс сконструировал первую в мире "логическую машину", позволяющую механизировать простейшие логические выводы.
6 Релейно-механический компьютер 1943 г. в США на одном из предприятий фирмы IBM Говард Эйкен создал компьютер под названием «Марк-1». Он позволял проводить вычисления в сотни раз быстрее, чем вручную (с помощью арифмометра), и использовался для военных расчетов. В нем использовалось сочетание электрических сигналов и механических приводов. «Марк-1» имел размеры: 15 * 25 м и содержал деталей. Машина была способна перемножить два 32-разрядных числа за 4 с.
7 Десятью годами ранее, в 1934 г. немецкий студент Конрад Цузе, работавший над дипломным проектом, решил сделать цифровую вычислительную машину с программным управлением. В этой машине впервые в мире была использована двоичная система счисления. В 1937 г. машина Z1 произвела первые вычисления. Она была двоичной 22-х разрядной с плавающей запятой с памятью на 64 числа, и работала на чисто механической (рычажной) основе.
8 В годах в Англии была создана (с участием Алана Тьюринга) вычислительная машина "Колоссус". Эта машина, состоящая из 2000 электронных ламп, предназначалась для расшифровки радиограмм германского вермахта. Поскольку работы Цузе и Тьюринга были секретными, о них в то время знали немногие и они не вызвали какого-либо резонанса в мире.
9 ЭВМ "ЭНИАК" Только в 1946 г. появилась информация об ЭВМ "ЭНИАК" (электронный цифровой интегратор и компьютер), созданной в США Д. Мокли и П. Эккертом, с применением электронной техники. В машине использовалось 18 тысяч электронных ламп, и она выполняла около 3-х тыс. операций в сек. Однако, машина оставалась десятичной, а ее память составляла лишь 20 слов. Программы хранились вне оперативной памяти.
10 Поколения ЭВМ Первое поколение ( ) характеризуется появлением техники на электронных лампах. Это эпоха становления вычислительной техники. Большинство машин первого поколения были экспериментальными устройствами и строились с целью проверки тех или иных теоретических положений. Вес и размеры этих компьютеров были такими, что они нередко требовали для себя отдельных зданий.
11 Основоположниками компьютерной науки по праву считаются Клод Шеннон(1) – создатель теории информации, Алан Тьюринг(2) – математик, разработавший теорию программ и алгоритмов, и Джон фон Нейман(3) - автор конструкции вычислительных устройств, которая до сих пор лежит в основе большинства компьютеров. В те же годы возникла еще одна новая наука, связанная с информатикой, – кибернетика – наука об управлении как одном из основных информационных процессов. Основателем кибернетики является американский математик Норберт Винер.
12 Во втором поколении ( ) вместо электронных ламп использовались транзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и магнитные барабаны - далекие предки современных жестких дисков. Все это позволило резко уменьшить габариты и стоимость компьютеров, которые тогда впервые стали строиться на продажу. Но главные достижения этой эпохи принадлежат к области программ. Во втором поколении впервые появилось то, что сегодня называется операционной системой. Тогда же были разработаны первые языки высокого уровня - Фортран, Алгол, Кобол. Эти два важных усовершенствования позволили значительно упростить и ускорить написание программ для компьютеров.
13 В третьем поколении ( ) впервые стали использоваться интегральные схемы - целые устройства и узлы из десятков и сотен транзисторов, выполненные на одном кристалле полупроводника (микросхемы). В это же время появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах в качестве оперативной. В эти годы производство компьютеров приобретает промышленный размах. Фирма IBM первой реализовала серию полностью совместимых друг с другом компьютеров от самых маленьких, размером с небольшой шкаф (меньше тогда еще не делали), до самых мощных и дорогих моделей. Наиболее распространенным в те годы было семейство System/360 фирмы IBM.
14 В 1971 г. фирма Intel, выпустив первый микропроцессор, который предназначался для только-только появившихся настольных калькуляторов. Этому изобретению суждено было произвести в следующем десятилетии настоящую революцию. Микропроцессор является главной составляющей частью современного персонального компьютера. На рубеже 60-х и 70-х годов двадцатого столетия (1969 г) зародилась первая глобальная компьютерная сеть ARPA, прототип современного Интернета. В том же 1969 г. одновременно появились операционная система Unix и язык программирования С ("Си"), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое передовое положение.
15 Четвертое поколение (1975 – 1985) характеризуется все меньшим количеством принципиальных новаций в компьютерной науке. Прогресс идет в основном по пути развития того, что уже изобретено и придумано, прежде всего за счет повышения мощности и миниатюризации элементной базы и самих компьютеров. Самая главная новация четвертого поколения – это появление в начале 80-х годов персональных компьютеров. Благодаря персональным компьютерам вычислительная техника становится по-настоящему массовой и общедоступной.
16 Пятое поколение (1986 до настоящего времени) в значительной мере определяется результатами работы японского Комитета научных исследований в области ЭВМ, опубликованными в 1981 г. Согласно этому проекту ЭВМ и вычислительные системы пятого поколения кроме высокой производительности и надежности при более низкой стоимости с помощью новейших технологий, должны удовлетворять следующим качественно новым функциональным требованиям: обеспечить простоту применения ЭВМ путем реализации систем ввода/вывода информации голосом, а также диалоговой обработки информации с использованием естественных языков; обеспечить возможность обучаемости, ассоциативных построений и логических выводов; упростить процесс создания программных средств путем автоматизации синтеза программ по спецификациям исходных требований на естественных языках; улучшить основные характеристики и эксплуатационные качества вычислительной техники для удовлетворения различных социальных задач, улучшить соотношения затрат и результатов, быстродействия, легкости, компактности ЭВМ; обеспечить разнообразие вычислительной техники, высокую адаптируемость к приложениям и надежность в эксплуатации.
17 Ссылки на источники htm
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.