Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
2 ПИРАМИДА
3 Содержание Определение пирамиды Определение пирамиды Площадь пирамиды Правильная пирамида Свойство пирамиды Апофема Теорема о площади боковой поверхности правильной пирамиды Теорема о площади боковой поверхности правильной пирамиды Усеченная пирамида Правильная усеченная пирамида Теорема о площади боковой поверхности правильной усеченной пирамиды Теорема о площади боковой поверхности правильной усеченной пирамиды
4 α А1А1 А2А2 АnАn P H Определение Пирамида – многогранник, составленный из n - угольника А 1 А 2 …А n и n треугольников Основание Боковые грани Вершина Высота – перпендикуляр, проведенный из вершины пирамиды к плоскости основания Боковые ребра
5 Пирамиды Треугольная пирамида (тетраэдр) Шестиугольная пирамида Четырехугольная пирамида
6 Площадь пирамиды S полн. = S бок. + S осн. S бок. S осн.
7 Правильная пирамида Пирамида называется правильной, если ее основание – правильный многоугольник, а отрезок, соединяющий вершину пирамиды с центром основания, является ее высотой АnАn А1А1 А2А2 P h O А3А3
8 Все боковые ребра правильной пирамиды равны, а боковые грани являются равными равнобедренными треугольниками Дано: PA 1 A 2 …A n – правильная пирамида Док - ть: 1) А 1 Р = А 2 Р = … = А n Р 2) А 1 А 2 Р = А 2 А 3 Р = … = = А n-1 А n Р – р/б А1А1 А2А2 АnАn Р ОА3А3
9 1)Рассмотрим ОРА 1 – п/у РО – высота h, OA 1 – радиус описанной окружности R По теореме Пифагора: A 1 P= h 2 + R 2 A 2 P= h 2 + R 2 – любое боковое ребро РА 1 = РА 2 =…= РА n 1)Рассмотрим ОРА 1 – п/у РО – высота h, OA 1 – радиус описанной окружности R По теореме Пифагора: A 1 P= h 2 + R 2 A 2 P= h 2 + R 2 – любое боковое ребро РА 1 = РА 2 =…= РА n Док – во: А1А1 А2А2 АnАn Р О 2) т. к. РА 1 = РА 2 =…= РА n, поэтому Боковые грани – р/б Основания этих равны: А 1 А 2 = А 2 А 3 = … = А 1 А n т. к. А 1 А 2 …А n - правильный многоугольник 2) т. к. РА 1 = РА 2 =…= РА n, поэтому Боковые грани – р/б Основания этих равны: А 1 А 2 = А 2 А 3 = … = А 1 А n т. к. А 1 А 2 …А n - правильный многоугольник А 1 А 2 Р = … = А n-1 А n Р – р/б R h
10 Апофема – высота боковой грани правильной пирамиды, проведенная из ее вершины Апофемы Все апофемы правильной пирамиды равны друг другу
11 Теорема о площади боковой поверхности правильной пирамиды Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему Док – во: S бок = (½ad + ½ad + ½ad) = = ½d(a + a + a)= ½dP d a S бок = ½dP
12 Усеченная пирамида многогранник, образованный пирамидой и её сечением, параллельным основанию. Нижнее и верхнее основания Боковые грани Боковые ребра Высота (перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания)
13 Все боковые грани усеченной пирамиды - трапеции
14 Усеченная пирамида называется правильной, если она получена сечением правильной пирамиды плоскостью, параллельной основанию.
15 a2a2 a2a2 a1a1 a1a1 Теорема о площади боковой поверхности правильной усеченной пирамиды Площадь боковой поверхности правильной усеченной пирамиды равна произведению полусуммы периметров оснований на апофему S бок = ½(Р 1 + Р 2 ) d P 1 = 4a 1 P 2 = 4a 2 Док – во: S бок = ½d(a 1 +a 2 ) + ½d(a 1 +a 2 ) + + ½ d(a 1 +a 2 ) + ½d(a 1 +a 2 ) = = ½d(a 1 + a 2 + a 1 + a 2 + a 1 + a 2 + a 1 + a 2 ) = = ½d(4a 1 + 4a 2 ) = ½d(P 1 + P 2 ) d d
16 Итог урока Что называется пирамидой? Правильной пирамидой? Усеченной пирамидой? Что называется площадью боковой поверхности пирамиды? Что называется площадью полной поверхности пирамиды? Чему равна площадь боковой поверхности правильной пирамиды?
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.