Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 6 лет назад пользователемНаталья Голубева
2 Две прямые называются скрещивающимися, если они не лежат в одной плоскости. Определение М a b a b
3 Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся. Признак скрещивающихся прямых D В АВ СD А C ?
4 Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и притом только одна. Теорема о скрещивающихся прямых D С B E A
5 А D С В B1B1 С1С1 D1D1 А1А1 Каково взаимное положение прямых 1) AD 1 и МN; 2) AD 1 и ВС 1 ; 3) МN и DC? N M
6 А D С В B1B1 С1С1 D1D1 А1А1 Докажите, что прямые 1) AD и C 1 D 1 ; 2) A 1 D и D 1 C; 3) AB 1 и D 1 C скрещивающиеся. N M
7 А В С D M N P Р1Р1 К Дано: D (АВС), АМ = МD; ВN = ND; CP = PD К ВN. Определить взаимное расположение прямых: а) ND и AB б) РК и ВС в) МN и AB
8 А В С D M N P К Дано: D (АВС), АМ = МD; ВN = ND; CP = PD К ВN. Определить взаимное расположение прямых: а) ND и AB б) РК и ВС в) МN и AB г) МР и AС д) КN и AС е) МD и BС
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.