Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 7 лет назад пользователемНаталья Бенюх
1 Многогранники
2 Многогранники Т ело, которое ограничено плоскими многоугольниками, называется многогранником. Многоугольники, образующие поверхность многогранника, называются гранями. Стороны этих многоугольников рёбра многогранников. Вершины многоугольников вершины многогранников.
3 Первые упоминания о многогранниках известны еще за три тысячи лет до нашей эры в Египте и Вавилоне. Но теория многогранников является и современным разделом математики.
4 Элементы многогранника В 1 АВ С Грани: АBСD, АА 1 В 1 В, АА 1 D 1 D, СС 1 В 1 В, СС 1 D 1 D, А 1 В 1 С 1 D 1 Ребра: АB, ВС, СD, DA, АА 1, ВВ 1, СС 1, DD 1, А 1 В 1, В 1 С 1, С 1 D 1, D 1 A 1 Вершины: А, B, С, D, А 1, В 1, С 1, D 1 С 1 D 1 D A 1
5 Многогранником называется тело, граница которого является объединением конечного числа многоугольников. Многоугольники из которых составлен многогранник называются его гранями. Стороны граней – ребрами. Концы ребер – вершинами многогранника. Отрезок соединяющий две вершины не принадлежащий одной грани называются диагональю
6 Выпуклый многогранник характеризуется тем, что он расположен по одну сторону от плоскости каждой своей грани, а не выпуклый – по разные стороны от этой плоскости
7 Букет Пуансо Букет Платона Букет Архимеда Многогранники имеют красивые формы, например, правильные, полуправильные и звездчатые многогранники. Они обладают богатой историей, которая связана с именами таких ученых, как Пифагор, Евклид, Архимед
8 Изучением многогранников занимались Пифагор и его ученики. Их поражала красота, совершенство, гармония этих фигур. Пифагорейцы считали правильные многогранники божественными фигурами и использовали в своих философских сочинениях: первоосновам бытия - огню, земле, воздуху, воде придавалась форма соответственно тетраэдра, куба, октаэдра, икосаэдра, а вся Вселенная имела форму додекаэдра. Позже учение пифагорейцев о правильных многогранниках изложил в своих трудах другой древнегреческий ученый, философ - идеалист Платон.
9 ПРАВИЛЬНЫЙ МНОГОГРАННИК- выпуклый многогранник, грани которого являются правильными многоугольниками с одним и тем же числом сторон и в каждой вершине которого сходится одно и то же число ребер.
10 ТЕТРАЭДР Тетраэдр – представитель платоновых тел, то есть правильных выпуклых многогранников. Поверхность тетраэдра состоит из четырех равносторонних треугольников, сходящихся в каждой вершине по три.
11 КУБ (ГЕКСАЭДР) Куб или гексаэдр – представитель платоновых тел, то есть правильных выпуклых многогранников. Куб имеет шесть квадратных граней, сходящихся в каждой вершине по три.
12 ОКТАЭДР Октаэдр – представитель семейства платоновых тел, то есть правильных выпуклых многогранников. Октаэдр имеет восемь треугольных граней, сходящихся в каждой вершине по четыре.
13 ПРИЗМА Призмой называется многогранник, поверхность которого состоит из двух равных многоугольников, называемых основаниями призмы, и параллелограммов, имеющих общие стороны с каждым из оснований и называемых боковыми гранями призмы. Призма называется прямой, если её боковые грани – прямоугольники её боковые грани – прямоугольники. Прямая призма называется правильной, если её основания – правильные многоугольники.
14 КУБ, ПАРАЛЛЕЛЕПИПЕД Параллелепипедом называется многогранник, поверхность которого состоит из шести параллелограммов поверхность которого состоит из шести параллелограммов. Прямоугольным параллелепипедом называется параллелепипед, грани которого – прямоугольники. Кубом называется многогранник, поверхность которого состоит из шести квадратов поверхность которого состоит из шести квадратов.
15 ПИРАМИДА Пирамидой называется многогранник Пирамидой называется многогранник, поверхность которого состоит из многоугольника, называемого основанием пирамиды, и треугольников, имеющих общую вершину, называемых боковыми гранями пирамиды. Пирамида называется правильной, если её основание – правильный многоугольник и все боковые ребра равны.
16 Многогранник, поверхность которого состоит из многоугольника и треугольников, имеющих общую вершину Многоугольник называют основанием пирамиды Многоугольник называют основанием пирамиды Треугольники называют боковыми гранями Треугольники называют боковыми гранями Общую вершину называют вершиной пирамиды Общую вершину называют вершиной пирамиды Перпендикуляр РН называют высотой Перпендикуляр РН называют высотой Н Р Пирамида
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.