Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 8 лет назад пользователемBlack Man
2 Пифагор Самосский. (Pythagoras of Samos) Родился: около 569 г. до нашей эры (жил около 2,5 тысяч лет тому назад) на острове Самос в Ионическом море (Ionii) Умер: около 475 г. до нашей эры. Биографические сведения: - 22 года Пифагор набирался мудрости в Египте. -В греческой колонии Южной Италии им была основана знаменитая «Пифагорова школа», сыгравшая важную роль в научной и политической жизни древней Греции. - Именно Пифагору приписывают доказательство известной геометрической теоремы 576 – 496 г. до н. э.
3 История теоремы Исторический обзор начнем с древнего Китая. Здесь особое внимание привлекает математическая книга Чу-пей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: "Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4".
4 Теорема Пифагора В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов а в катеты с с² = а² + в² гипотенуза
5 Первоначально теорема звучала так: Площадь квадрата, построенного на гипотенузе, равна сумме площадей квадрата, построенных на катетах
6 Пифаго́ревы штаны́ (школьн., устар.) учебниках эта теорема доказывалась через доказательство равенства суммы площадей шуточное название теоремы Пифагора, возникшее в силу того, что раньше в школьных квадратов, построенных на катетах прямоугольного треугольника, площади квадрата, построенного на гипотенузе этого треугольника. Построенные на сторонах треугольника и расходящиеся в разные стороны квадраты напоминали школьникам покрой мужских штанов, что породило следующее стихотворение: «Пифагоревы штаны на все стороны равны».
7 В наш век эта фигура Пифагора выросла в целое дерево. Впервые дерево Пифагора построил А. Е. Босман ( ) во время второй мировой войны, используя обычную чертёжную линейку. Одним из свойств дерева Пифагора является то, что, если площадь первого квадрата равна единице, то на каждом уровне сумма площадей квадратов тоже будет равна единице. Если в классическом дереве Пифагора угол равен 45 градусам, то также можно построить и обобщённое дерево Пифагора при использовании других углов. Такое дерево часто называют «обдуваемое ветром дерево Пифагора». А рисуя вместо квадратов линии, можно получать картинки, очень похожие на настоящие деревья.
9 Доказательства методом разложения Существует целый ряд доказательств теоремы Пифагора, в которых квадраты, построенные на катетах и на гипотенузе, разрезаются так, что каждой части квадрата,построенного на гипотенузе, соответствует часть одного из квадратов, построенных на катетах. Во всех этих случаях для понимания доказательства достаточно одного взгляда на чертеж; рассуждение здесь может быть ограничено единственным словом: "Смотри!", как это делалось в сочинениях древних индусских математиков. Следует, однако, заметить, что на самом деле доказательство нельзя считать полным, пока мы не доказали равенства всех соответствующих друг другу частей. Это почти всегда довольно не трудно сделать, однако может (особенно при большом количестве частей) потребовать довольно продолжительной работы.
10 1. Доказательство Эпштейна
11 2. Доказательство Нильсена.
12 3. Доказательство Бетхера «Посмотрите!», как это делалось в сочинениях древних индусских математиков
13 4. Доказательство Перигаля В учебниках нередко встречается разложение указанное на рисунке (так называемое "колесо с лопастями"; это доказательство нашел Перигаль). Через центр O квадрата, построенного на большем катете, проводим прямые, параллельную и перпендикулярную гипотенузе. Соответствие частей фигуры хорошо видно из чертежа.
14 6. Доказательство 9 века н.э. Эту фигуру, которая встречается в доказательствах, датируемых не позднее, чем 9 столетием н. э., индусы называли "стулом невесты"
15 Доказательства методом дополнения
16 Доказательство первое. Наряду с доказательствами методом сложения можно привести примеры доказательств при помощи вычитания, называемых также доказательствами методом дополнения.
17 Другие доказательства
18 Доказательство Евклида Это доказательство было приведено Евклидом в его "Началах". По свидетельству Прокла (Византия), оно придумано самим Евклидом. Доказательство Евклида приведено в предложении 47 первой книги "Начал".
19 Доказательство основанное на теории подобия В прямоугольном треугольника АВС проведем из вершины прямого угла высоту CD; тогда треугольник разобьется на два треугольника, также являющихся прямоугольными. Полученные треугольники будут подобны друг другу и исходному треугольнику. Это легко доказать, пользуясь первым признаком подобия(по двум углам). В самом деле, сразу видно что, кроме прямого угла, треугольники АВС и ACD имеют общий угол a, треугольники CBD и АВС - общий угол b. То, что малые треугольники также подобны друг другу, следует из того, что каждый из них подобен большому треугольнику. Впрочем, это можно установить и непосредственно.
20 3 x 6 32 x x x 4 4 Примеры решения геометрических задач Применение теоремы в курсе геометрии
21 В древней Индии был обычай предлагать задачи в стихах Над озером тихим С полфута размером Высился лотоса цвет. Он рос одиноко, И ветер порывом Отнёс его в сторону. Нет Боле цветка над водой. Нашёл же рыбак его Ранней весною В двух футах от места, где рос. Итак, предложу я вопрос: Как озера вода здесь глубока? Выполним чертёж к задаче и обозначим глубину озера АС =Х, тогда AD = AB = Х + 0,5. Из треугольника ACB по теореме Пифагора имеем AB2 – AC2 = BC2, (Х + 0,5 )2 – Х2 = 22, Х2 + Х + 0,25 – Х2 = 4, Х = 3,75. Таким образом, глубина озера составляет 3,75 фута
22 Применение теоремы в жизни В зданиях готического и романского стиля верхние части окон расчленяются каменными ребрами, которые не только играют роль орнамента, но и способствуют прочности окон. На рисунке представлен простой пример такого окна в готическом стиле. Способ построения его очень прост: Из рисунка легко найти центры шести дуг окружностей, радиусы которых равны 1. ширине окна (b) для наружных дуг 2. половине ширины, (b/2) для внутренних дуг Остается еще полная окружность, касающаяся четырех дуг. Т. к. она заключена между двумя концентрическими окружностями, то ее диаметр равен расстоянию между этими окружностями, т. е. b/2 и, следовательно, радиус равен b/4. А тогда становится ясным и положение ее центра. В рассмотренном примере радиусы находились без всяких затруднений. В других аналогичных примерах могут потребоваться вычисления; покажем, как применяется в таких задачах теорема Пифагора.
23 В романской архитектуре часто встречается мотив, представленный на рисунке. Если b по-прежнему обозначает ширину окна, то радиусы полуокружностей будут равны R = b / 2 и r = b / 4. Радиус p внутренней окружности можно вычислить из прямоугольного треугольника, изображенного на рис. пунктиром. Гипотенуза этого треугольника, проходящая через точку касания окружностей, равна b/4+p, один катет равен b/4, а другой b/2-p. По теореме Пифагора имеем: (b/4+p)=( b/4)+( b/4-p) или b/16+ bp/2+p=b/16+b/4-bp+p, откуда bp/2=b/4-bp. Разделив на b и приводя подобные члены, получим: (3/2)p=b/4, p=b/6.
24 Презентация подготовлена учеником 8 б класса Аксёновым Максимом
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.