Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 8 лет назад пользователемОльга Заплатина
1 Электрический ток в различных средах Презентация на тему:Электрический ток в различных средах
2 Электрический ток может протекать в пяти различных средах: Металлах Вакууме Полупроводниках Жидкостях Газах
3 Электрический ток в металлах: Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда.
4 Опыты Леонида Мандельштама и Николай Папалекси являются доказательством того, что металлы обладают электронной проводимостью Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру Г. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией электронов.
5 Вывод:1. носителями заряда в металлах являются электроны; 2. процесс образования носителей заряда – обобществление валентных электронов; 3. сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению проводника – выполняется закон Ома; 4. техническое применение электрического тока в металлах: обмотки двигателей, трансформаторов, генераторов, проводка внутри зданий, сети электропередачи, силовые кабели.
6 Электрический ток в вакууме Вакуум - сильно разреженный газ, в котором средняя длина свободного пробега частицы больше размера сосуда, то есть молекула пролетает от одной стенки сосуда до другой без соударения с другими молекулами. В результате в вакууме нет свободных носителей заряда, и электрический ток не возникает. Для создания носителей заряда в вакууме используют явление термоэлектронной эмиссии.
7 ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ – это явление «испарения» электронов с поверхности нагретого металла. В вакуум вносят металлическую спираль, покрытую оксидом металла, нагревают её электрическим током (цепь накала) и с поверхности спирали испаряются электроны, движением которых можно управлять при помощи электрического поля.
8 На слайде показано включение двухэлектродной лампы Такая лампа называется вакуумный диод
9 Эта электронная лампа носит название вакуумный ТРИОД. Она имеет третий электрод –сетку, знак потенциала на которой управляет потоком электронов.
10 Выводы:1. носители заряда – электроны; 2. процесс образования носителей заряда – термоэлектронная эмиссия; 3. закон Ома не выполняется; 4. техническое применение – вакуумные лампы (диод, триод), электронно – лучевая трубка.
11 Электрический ток в полупроводниках При нагревании или освещении некоторые электроны приобретают возможность свободно перемещаться внутри кристалла, так что при приложении электрического поля возникает направленное перемещение электронов. полупроводники представляют собой нечто среднее между проводниками и изоляторами. Полупроводники - твердые вещества, проводимость которых зависит от внешних условий (в основном от нагревания и от освещения).
12 С понижением температуры сопротивление металлов падает. У полупроводников, напротив, с понижением температуры сопротивление возрастает и вблизи абсолютного нуля они практически становятся изоляторами. Зависимость удельного сопротивления ρ чистого полупроводника от абсолютной температуры T.
13 Выводы:1. носители заряда – электроны и дырки; 2. процесс образования носителей заряда – нагревание, освещение или внедрение примесей; 3. закон Ома не выполняется; 4. техническое применение – электроника.
14 Электрический ток в жидкостях Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. Электролитами являются водные растворы неорганических кислот, солей и щелочей.
15 Сопротивление электролитов падает с ростом температуры, так как с ростом температуры растёт количество ионов. График зависимости сопротивления электролита от температуры.
16 Явление электролиза - это выделение на электродах веществ, входящих в электролиты; Положительно заряженные ионы (анионы) под действием электрического поля стремятся к отрицательному катоду, а отрицательно заряженные ионы (катионы) - к положительному аноду. На аноде отрицательные ионы отдают лишние электроны (окислительная реакция ) На катоде положительные ионы получают недостающие электроны (восстановительная ).
17 Вывод:1. носители заряда – положительные и отрицательные ионы; 2. процесс образования носителей заряда – электролитическая диссоциация; 3. электролиты подчиняются закону Ома; 4. Применение электролиза : получение цветных металлов (очистка от примесей - рафинирование); гальваностегия - получение покрытий на металле (никелирование, хромирование, золочение, серебрение и т.д. ); гальванопластика - получение отслаиваемых покрытий (рельефных копий).
18 Электрический ток в газах Зарядим конденсатор и подключим его обкладки к электрометру. Заряд на пластинах конденсатора держится сколь угодно долго, не наблюдается перехода заряда с одной пластины конденсатора на другую. Следовательно воздух между пластинами конденсатора не проводит ток. В обычных условиях отсутствует проводимость электрического тока любыми газами. Нагреем теперь воздух в промежутке между пластинами конденсатора, внеся в него зажженную горелку. Электрометр укажет появление тока, следовательно при высокой температуре часть нейтральных молекул газа распадается на положительные и отрицательные ионы. Такое явление называется ионизацией газа.
19 Прохождение электрического тока через газ называется разрядом. Разряд, существующий при действии внешнего ионизатора, - несамостоятельный. Если действие внешнего ионизатора продолжается, то через определенное время в газе устанавливается внутренняя ионизация (ионизация электронным ударом) и разряд становится самостоятельным.
20 Виды самостоятельного разряда: ИСКРОВОЙ ТЛЕЮЩИЙ КОРОННЫЙ ДУГОВОЙ
21 Искровой разряд При достаточно большой напряженности поля (около 3 МВ/м) между электродами появляется электрическая искра, имеющая вид ярко светящегося извилистого канала, соединяющего оба электрода. Газ вблизи искры нагревается до высокой температуры и внезапно расширяется, отчего возникают звуковые волны, и мы слышим характерный треск.
22 Молния. Красивое и небезопасное явление природы – молния – представляет собой искровой разряд в атмосфере. Уже в середине 18-го века высказывалось предположение, что грозовые облака несут в себе большие электрические заряды и что молния есть гигантская искра, ничем, кроме размеров, не отличающаяся от искры между шарами электрической машины. На это указывал, например, русский физик и химик Михаил Васильевич Ломоносов ( ), наряду с другими научными вопросами занимавшийся атмосферным электричеством.
23 Электрическая дуга (дуговой разряд) В 1802 году русский физик В.В. Петров ( ) установил, что если присоединить к полюсам большой электрической батареи два кусочка древесного угля и, приведя угли в соприкосновение, слегка их раздвинуть, то между концами углей образуется яркое пламя, а сами концы углей раскалятся добела, испуская ослепительный свет.
25 Вывод:1. носители заряда – положительные, отрицательные ионы и электроны; 2. процесс образования носителей заряда – ионизация внешним ионизатором или электронным ударом; 3. газы не подчиняются закону Ома; 4. Техническое применение: дуговая электросварка, коронные фильтры, искровая обработка металлов, лампы дневного света и газосветная реклама.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.