Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 8 лет назад пользователемЮлия Карташова
1 Кривые второго порядка Общее уравнение кривой второго порядка Окружность Эллипс Гипербола Парабола
2 Общее уравнение кривой второго порядка К кривым второго порядка относятся: эллипс, частным случаем которого является окружность, гипербола и парабола. Они задаются уравнением второй степени относительно x и y: Общее уравнение кривой второго порядка В некоторых частных случаях это уравнение может определять также две прямые, точку или мнимое геометрическое место.
3 Эллипс Эллипсом называется геометрическое место точек, сумма расстояний от каждой из которых до двух точек той же плоскости F 1 и F 2, называемых фокусами, есть величина постоянная, равная 2 а, а середину отрезка F 1 F 2 – центром эллипса. y 0 х F1F1 F2F2 -c c M(x; y) r1r1 r2r2 Зададим систему координат и начало координат выберем в середине отрезка [F 1 F 2 ]
4 Эллипс b2b2 b2b2 b2b2 Каноническое уравнение эллипса
5 Гипербола Гиперболой называется геометрическое место точек, разность расстояний от каждой из которых до двух точек той же плоскости F 1 и F 2, называемых фокусами, есть величина постоянная, равная 2 а, а середину отрезка F 1 F 2 – центром гиперболы. y 0 х F1F1 F2F2 -c c M(x; y) r1r1 r2r2
6 Гипербола b2b2 b2b2 b2b2 Каноническое уравнение гиперболы После тождественных преобразований уравнение примет вид:
7 Пример Составить уравнение гиперболы, проходящей через точку А(6; -4), если ее асимптоты заданы уравнениями: Решим систему: Точка А лежит на гиперболе
8 Парабола y 0 х F M(x; y) d r Параболой называется геометрическое место точек на плоскости, для каждой из которых расстояние до некоторой фиксированной точки той же плоскости, называемой фокусом, равно расстоянию до прямой: Фиксированную прямую называют директриссой параболы.
9 Преобразование общего уравнения к каноническому виду Общее уравнение кривой называется пяти-членным, если 2Bxy=0: Приведение пяти-членного уравнения к каноническому виду рассмотрим на примере:
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.