Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 8 лет назад пользователемИрина Жириновская
1 Перпендикуляр и наклонная
2 Теорема: Прямая, проведенная в плоскости через основание наклонной перпендикулярно к ее проекции на эту плоскость, перпендикулярна и к самой наклонной. Теорема о трех перпендикулярах
3 Доказательство 1) АВ – перпендикуляр АС– наклонная СВ – проекция наклонной на плоскости а 2) а) АВ перпендикулярно с (с лежит в плоскости АВС, а АВ перпендикулярно ей). б) СВ перпендикулярно с (по усл.), в) АВ пересекает СВ. 3) Из а) б) в) следует, что с перпендикулярно плоскости АВС, следовательно с перпендикулярно любой прямой из этой плоскости, т.е. с перпендикулярно АС. Что и требовалось доказать.
4 Перпендикуляр и наклонная Пусть через точку А, не принадлежащую плоскости p, проведена прямая, перпендикулярная этой плоскости и пересекающая ее в точке В. Тогда отрезок АВ называется перпендикуляром, опущенным из точки А на эту плоскость, а сама точка В основанием этого перпендикуляра. Любой отрезок АС, где С произвольная точка плоскости p, отличная от В, называется наклонной к этой плоскости. Заметим, что точка В в этом определении является ортогональной проекцией точки А, а отрезок АС ортогональной проекцией наклонной AВ. Ортогональные проекции обладают всеми свойствами обычных параллельных проекций, но имеют и ряд новых свойств.
5 Пусть из одной точки к плоскости проведены перпендикуляр и несколько наклонных. Тогда справедливы следующие утверждения. 1. Любая наклонная длиннее как перпендикуляра, так и ортогональной проекции наклонной на эту плоскость. 2. Равные наклонные имеют и равные ортогональные проекции, и наоборот, наклонные, имеющие равные проекции, также равны. 3. Одна наклонная длиннее другой тогда и только тогда, когда ортогональная проекция первой наклонной длиннее ортогональной проекции второй наклонной. Свойства ортогональной проекции
6 Пусть даны плоскость и наклонная прямая. Углом между прямой и плоскостью называется угол между прямой и ее ортогональной проекцией на эту плоскость. Если прямая параллельна плоскости, то угол между ней и плоскостью считается равным нулю. Если прямая перпендикулярна плоскости, то угол между ней и плоскостью прямой, т. е. равен 90°. Угол между наклонной и плоскостью
7 Задача Через вершину А прямоугольного треугольника АВС с прямым углом С проведена прямая АD, перпендикулярная к плоскости треугольника. Докажите, что треугольник СВD – прямоугольный. Найдите ВD, если ВС= DC=
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.